Volume 3 Part III Landfill Permit Amendment Site Development Plan TCEQ MSW Permit No. 1522B

Volume 3 of 5

prepared for

City of Victoria, Texas City of Victoria Landfill Lateral and Vertical Expansion Victoria County, Texas

prepared by

Burns & McDonnell Engineering Company, Inc. 8911 N Capital of Texas Hwy, Building 3, Suite 3100 Austin, Texas 78759 Texas Firm Registration No. F-845

City of Victoria, Texas Part III Landfill Permit Amendment Site Development Plan TCEQ MSW Permit No. 1522B

SIATE OF TEXTON

Volume 3 of 5

Contents

Part III Site Development Plan

Attachment 5Geology ReportAttachment 6Groundwater Sampling and Analysis Plan

Notes

The professional engineering seal included on this page applies only for this Table of Contents and is for permitting purposes only.

The responsible engineer has signed, sealed, and dated applicable engineering documents within the application as required by the Texas Engineering Practice Act.

The responsible geoscientist has signed, sealed, and dated applicable documents within the application as required by the Texas Geoscientist Practice Act

Certification

I hereby certify, as a Professional Engineer in the state of Texas, that the information in this document was assembled under my direct personal charge. This report is not intended or represented to be suitable for reuse by the City of Victoria, Texas or others without specific verification or adaptation by the Engineer.

ATTACHMENT 5 – GEOLOGY REPORT

Part III, Attachment 5 – Geology Report TCEQ MSW Permit No. 1522B

City of Victoria, Texas

City of Victoria Landfill Lateral and Vertical Expansion Project No. 107608

Revision 0, March 28, 2022

Part III, Attachment 5 – Geology Report TCEQ MSW Permit No. 1522B

prepared for

City of Victoria, Texas City of Victoria Landfill Lateral and Vertical Expansion Victoria County, Texas

Project No. 107608

Revision 0, March 28, 2022

prepared by

Burns & McDonnell Engineering Company, Inc. 8911 N Capital of Texas Hwy, Building 3, Suite 3100 Austin, Texas 78759 Texas Firm Registration No. F-845 / 50338

TABLE OF CONTENTS

Page No.

1.0	INTR	ODUCTION
	1.1	Purpose and Scope
	1.2	Site Location and Description
	1.3	Report Structure
2.0	REG	IONAL GEOLOGY AND HYDROGEOLOGY
	2.1	Regional Geology [30 TAC §330.63(e)(1)]3
	2.2	Geologic Processes [30 TAC §330.63(e)(2)]4
	2.3	Regional Hydrogeology [30 TAC §330.63(e)(3)]5
3.0	HYD	ROGEOLOGIC INVESTIGATION ACTIVITIES
	3.1	Soil Borings7
	3.2	Piezometers8
	3.3	Soil Laboratory Testing8
	3.4	Water Level Measurements9
	3.5	Surveying9
	3.6	Boring Abandonment9
	3.7	Management of Investigation Derived Waste9
4.0	HYD	ROGEOLOGIC INVESTIGATION RESULTS AND SITE
	INFC	ORMATION
	4.1	Site Geology11
	4.2	Site Hydrogeology14
	4.3	Soils Laboratory Testing16
5.0	REF	ERENCES
		5A – HISTORICAL LANDFILL INFORMATION
APP		5B – REGIONAL GEOLOGY INFORMATION
APPI		5C – BORING LOGS
APPI		5D – PIEZOMETER CONSTRUCTION DIAGRAMS AND TEXAS
		WATER DEVELOPMENT BOARD SUBMITTED DRILLERS
		REPORTS
APP		5E – GEOTECHNICAL LABORATORY REPORTS
APP		5F – SURVEY REPORT
APP		5G – HISTORICAL SITE GEOLOGY INFORMATION
APP		5H – HYDRAULIC GRADIENTS AND GROUNDWATER
_	-	VELOCITY FLOW RATE CALCULATIONS
APP		51 – HISTORICAL SITE HYDROGEOLOGY INFORMATION
APPI	ENDIX	5J – HISTORICAL GROUNDWATER ELEVATIONS AND
	•	MONITORING DATA

LIST OF TABLES

- Table 3-1Soil Boring Summary
- Table 3-2
 Piezometer Construction and Groundwater Level Data
- Table 3-3Soils Laboratory Testing Summary
- Table 4-1
 Groundwater Elevation, Gradient, and Flow Rate Expansion Borings

LIST OF FIGURES

- Figure 1-1 Site Location Map
- Figure 1-2 Site Layout
- Figure 2-1 Regional Geologic Map
- Figure 2-2 Regional Cross-Section
- Figure 2-3Regional Stratigraphic Column
- Figure 2-4 Water Supply Well Map
- Figure 3-1 Boring Locations and Geologic Cross-Section Transects
- Figure 4-1 Geologic Cross-Section Southwest-Northeast
- Figure 4-2 Geologic Cross-Sections Northwest-Southeast
- Figure 4-3 Groundwater Elevation Map February 2019
- Figure 4-4 Groundwater Elevation Map August 2019
- Figure 4-5 Groundwater Elevation Map February 2020
- Figure 4-6 Groundwater Elevation Map August 2020
- Figure 4-7 Groundwater Elevation Map March 2021
- Figure 4-8 Groundwater Elevation Map September 2021

LIST OF ABBREVIATIONS

Abbreviation	<u>Term/Phrase/Name</u>
amsl	above mean sea level
bgs	below ground surface
bmsl	below mean sea level
City	City of Victoria
cm/s	centimeters per second
EDE	elevation of deepest excavation
ft/day	feet per day
Landfill	City of Victoria Landfill
MSW	Municipal Solid Waste
ppm	parts per million
Report	Geology Report
SBP	Soil Boring Plan
SDP	Site Development Plan
TAC	Texas Administrative Code
TCEQ	Texas Commission of Environmental Quality
TWDB	Texas Water Development Board
USCS	Unified Soil Classification System
USGS	U.S. Geological Survey

1.0 INTRODUCTION

1.1 **Purpose and Scope**

The City of Victoria (City) Landfill (Landfill) is located on FM 1686 near the intersection of State Highway 185 in Victoria County, Texas, near Bloomington, Texas. The City is incorporating a Landfill expansion area (permitted under MSW Permit 1522B) which includes an approximately 300-acre tract of land located directly southeast of, and adjacent to, the existing permitted municipal solid waste (MSW) Landfill. A Site Location Map is presented as Figure 1-1 and a Site Layout is presented as Figure 1-2.

This Geology Report (Report) has been prepared to document implementation of the Soil Boring Plan (SBP) (Burns & McDonnell, 2018) and to support completion of the requirements of Texas Administrative Code (TAC) Title 30 Part 1 Chapter 330 Rule 63 (e) (30 TAC §330.63(e)) Geology report, which provides the requirements to characterize the subsurface conditions within the Landfill expansion area. Information collected during the Landfill expansion area investigation and existing information, including information presented in the *Site Development Plan (SDP) Attachment 4 Geology Report, City of Victoria Landfill, TNRCC Permit No. MSW-1522, Height of Fill Amendment, May 1, 1996, Revised October 21, 1996, Revised January 13, 1997* (JFK Group, Inc., 1997) (see Appendix 5A), was used is the development of this Report.

1.2 Site Location and Description

The Landfill is located in the central region of the Gulf Coastal Plain in Victoria County on an approximate 454.5-acre site located east of the intersection of FM 1686 and State Highway 185 as shown in Figure 1-2. Approximately 190 acres of the expansion area are currently cultivated and used for agriculture. The remaining 110 acres are currently used as a Landfill borrow source for soil cover and City composting operations.

1.3 Report Structure

This Report includes the following components:

- Section 1.0 Introduction provides an overview of the Landfill and expansion area and a description of the purpose and scope of the investigation.
- Section 2.0 Regional Geology and Hydrogeology includes a discussion of the regional geologic and hydrogeologic setting of the site.
- Section 3.0 Hydrogeologic Investigation Activities provides a summary of the investigation field activities that were completed for the Landfill expansion area.

- Section 4.0 Hydrogeologic Investigation Results and Site Information provides a presentation of the results from the investigation and describes the geological and hydrogeological setting of the Landfill expansion area.
- Section 5.0 References includes the references cited in this Report.

2.0 REGIONAL GEOLOGY AND HYDROGEOLOGY

This section includes a discussion of the regional geologic and hydrogeologic setting of the site based upon published information.

2.1 Regional Geology [30 TAC §330.63(e)(1)]

The site is located in South Texas in the central region of the Gulf Coastal Plain in Victoria County. The site generally slopes to the south and southeast at an approximate 0.2 percent slope. Natural ground surface elevation of the expansion area ranges from approximately 62 feet above mean sea level (amsl) to 64 feet amsl (the current ground surface elevation is variable in the Landfill soil borrow source area due to excavation activities and at the City composting operations area due to composting activities).

According to the Geologic Atlas of Texas, Beeville – Bay City Sheet (The University of Texas at Austin, 1987), the site is located over the Beaumont Formation (also referred to as the Beaumont Clay), a deltaic, non-marine, Pleistocene deposit which extends from the northeast to the southwest along the coast of Texas. An excerpt of the Geologic Atlas of Texas, Beeville – Bay City Sheet depicting the Texas coastal regional geology is included as Figure 2-1. Figure 2-2 illustrates a regional cross-section and Figure 2-3 presents a regional stratigraphic column. According to the Texas Water Development Board (TWDB) Report 365, Aquifers of the Gulf Coast of Texas (TWDB, 2006) and Report 380, Aquifers of Texas (TWDB, 2011), the Beaumont Formation is heterogeneous, containing thick interbedded layers of clay, fine sand, and silt. The formation consists of a narrow, elongated, coarse-grained distributary and storm-event sands and silts that are sheathed by broad areas of fine-grained interdistributary muds and clays. The thickness of this formation is approximately 400 feet. The upper part of the formation consists of clay, silt, sand, and minor amounts of siliceous gravel of granule and small pebble size. The clay fraction is primarily composed of montmorillonite, illite, kaolinite, and finely ground quartz. The clay has been pre-consolidated by a process of desiccation and is highly plastic with low permeability. The sands and silts are generally composed of quartz, feldspar, large particles of kaolinite, calcite, and occasionally hornblende. The lower part of the Beaumont Formation consists of clay, silt, sand, and minor amounts of gravel. The dominant soils derived from this formation typically exhibit a high capacity for water retention, high compressibility, high to very high shrink-swell potential, and low permeabilities. The soil types at the site include Laewest clay and Dacosta-Contee complex; both are moderately well drained clays with very slow infiltration rates (U.S. Department of Agriculture, no date).

The Pleistocene age Lissie Formation underlies the Beaumont Formation and consists of thick beds of sand with lenticular layers of gravel, clay, silt, and some caliche. Lissie Formation sediments consist of reddish, orange, and gray fine- to coarse-grained, cross-bedded sands.

Below the Lissie Formation, in descending order, are the Goliad Sand, the Fleming Formation/Lagarto Clay, the Oakville Sandstone, and the Catahoula Tuff (see Figure 2-3; note, the Willis Sand shown on Figure 2-3 is discontinuous and is present only in some counties north of Victoria). The Goliad Formation consists of coarse-grained sediments, including cobbles, clay balls, and, occasionally, wood fragments. The upper part of the Goliad Formation consists of finer-grained sands and caliche (TWDB, 2006).

These geologic formations strike northeastward and dip southeastward toward the Gulf of Mexico. Near locations where the Beaumont Formation outcrops, the formations dip less than 20 feet per mile but the dip steepens toward the coast where older formations can dip more than 70 feet per mile (JFK Group, Inc., 1997).

2.2 Geologic Processes [30 TAC §330.63(e)(2)]

The geology of the Texas Gulf Coast region is complex due to cyclic deposition of sedimentary facies. Sediments were mainly deposited in the coastal plains of the Gulf of Mexico Basin under fluvial-deltaic or shallow-marine environments during the Miocene to the Pleistocene. Repeated sea level changes and natural basin subsidence produced discontinuous beds of sand, silt, clay, and gravel. Major features of the area's tectonic geology include: Gulf Coastal geosyncline, salt domes, major sea level changes during glacial stages, subsidence, and faulting activities (TWDB, 2006).

The City Landfill and the surrounding area were examined for the presence of geological faulting, including observations of the site and surrounding area, review of historical fault investigations in the vicinity, review of available literature and maps, and current aerial photography. The Beeville-Bay City sheet of the Geologic Atlas of Texas (Figure 2-1), the Tectonic Map of Texas (The University of Texas at Austin, 1994) (see Appendix 5B), and a review of the U.S. Geological Survey (USGS) Quaternary Fault and Fold Database of the United States (USGS, no date) (see Appendix 5B) did not indicate any faults within 10 miles of the Landfill. Review of the USGS 7.5-minute 2019 Bloomington, Texas Quadrangle Map (USGS, 2019), current aerial photographs of the site and site visits conducted during the hydrogeological investigation, no unusual relief or topographic features were identified within 200 feet of the site. No evidence of faulting was found associated with surrounding, adjacent, or on-site roadways.

The potential for earthquakes in the Gulf Coast region is minimal. Small natural earthquakes occasionally do occur in this region; however, these small earthquakes pose a hazard only in the immediate vicinity of

their epicenter; the occurrence of significantly larger earthquakes is unlikely based on review of the Regional hazard assessment, South-Central Texas (The University of Texas at Austin, no date).

According to the 2018 U.S. Geological Survey Long-term National Seismic Hazard Maps (USGS, 2018) (see Appendix 5B), the region is considered low hazard with 0.04-0.08 peak ground acceleration (expressed as a fraction of standard gravity) for 2 percent probability of exceedance in 50 years (Petersen, 2019). This is equivalent to less than 10 percent probability over 250 years. The area was predicted to have a less than one percent chance of potentially minor or moderate damage from ground shaking due to natural and induced earthquakes in 2018 (Petersen, 2018).

Land subsidence has been observed in areas southeast of the site, likely due to oil and gas and production (Ratzlaff, 1982). There are no oil and gas wells within one mile of the site. The site is not located in a karst region.

2.3 Regional Hydrogeology [30 TAC §330.63(e)(3)]

According to the TWDB Report 380, *Aquifers of Texas*, the site overlies formations belonging to the Gulf Coast Aquifer. The Gulf Coast Aquifer forms a wide belt along the Gulf of Mexico from Florida to Mexico. In Texas, the aquifer provides water to all or parts of 54 counties and extends from the Rio Grande northeastward to the Louisiana-Texas border. Municipal and irrigation uses account for a large percentage of the total pumpage from the aquifer according to the Victoria County Groundwater Conservation District Groundwater Management Plan (Victoria County Groundwater Conservation District, 2018) and data from the TWDB (TWDB, no date). Water wells located within one mile of the site are depicted on Figure 2-4.

The aquifer consists of discontinuous, complex, interbedded clays, silts, sands, and gravels of Cenozoic age, which are hydrologically connected to form a large, leaky artesian aquifer system. The lithology of alternating silty clays and water bearing sands can extend for hundreds of feet while some pinch-out at relatively short distances. Five major components make up the Gulf Coast Aquifer including, from deepest to shallowest, the Catahoula confining system, the Jasper aquifer (primarily within the Oakville Sandstone), the Burkeville confining system (not an aquifer), the Evangeline aquifer (Fleming and Goliad sands), and the Chicot aquifer (Willis Sand, Lissie Formation [Bentley Formation and Montgomery Formation], Beaumont Formation, and overlying alluvial deposits). These formations are not continuous throughout the system and nomenclature can differ across regions. In general, the total sand thickness in the Chicot aquifer (uppermost aquifer) ranges from 700 feet in the south to 1,300 feet in the north.

In the general area of the site, the regional aquifers are composed of unconsolidated layers of silt, sand, and gravel deposits separated by beds of clay. The heterogeneous character of these younger sediments makes correlation of the sands and clays difficult and imprecise over distances of several miles. The deposits are often lenticular; the lenses pinch out, coalesce, or grade into each other over short distances. The majority of groundwater in the region is under artesian conditions with the shallow groundwater present within Holocene age alluvium under unconfined conditions (JFK Group, Inc., 1997). According to the SDP, the upper soils at the site consist of medium to highly plastic clays with permeabilities of 1×10^{-10} 10^{-7} centimeters per second (cm/s) or less. Hydraulic conductivity in the Upper Chicot ranges from 0.008 to 0.03 cm/s and hydraulic conductivity in the Lower Chicot ranges from 0.007 to 0.03 cm/s. Groundwater in the Upper Chicot generally flows to the west/northwest at a rate of 0.01 to 0.04 feet per day (ft/day) and groundwater in the Lower Chicot generally flows to the east/southeast at a rate of 0.02 to 0.2 ft/day. The hydraulic conductivity of the Evangeline ranges from 0.01 to 0.02 cm/s and groundwater generally flows to the east/southeast at a rate of 0.02 to 0.2 ft/day (Parsons, 2015). The coefficient of transmissivity in eight wells in Victoria County ranged from 21,000 to 87,000 gallons per day per foot. The field coefficient of permeability ranged from 100 to 276 gallons per day per foot and averaged 192 gallons per day per foot (Marvin, 1962). Coefficients of transmissivity in the Goliad, Willis, and Lissie range from 11,000 to 67,000 gallons per day per foot (Wood, 1963).

Water quality in the shallower Chicot and Evangeline aquifers is typically suitable for drinking. Total dissolved solids from water wells in Victoria County indicated total dissolved solids levels ranging from 384 parts per million (ppm) to 1930 ppm (Marvin, 1962). Generally, the freshwater zone becomes thinner as it approaches the Gulf of Mexico and in many coastal locations, pumping has caused saltwater intrusion. A regional potentiometric surface map is not available for the site vicinity. An isopachous map of sand containing fresh or slightly saline water, Victoria and Calhoun Counties, Texas (Marvin, 1962) is in included in the SDP.

Based on the Geologic Atlas of Texas, recharge of the Beaumont clay and Lissie Formations is through precipitation that falls directly on the formations. Recharge through the Beaumont Clay that outcrops along the coast is generally small except in areas where valleys have been cut into the formation. Water not evaporated, consumed by plants through transpiration, or drained by streams from surface runoff infiltrates into the subsurface and eventually reaches the water table (TWDB, 2006). The Goliad Formation outcrops at the northwestern corner of Victoria County, more than 10 miles north of the site.

3.0 HYDROGEOLOGIC INVESTIGATION ACTIVITIES 30 TAC §330.63(e)(4)

The hydrogeologic investigation activities to characterize the subsurface conditions within the Landfill expansion area were conducted in accordance with Texas Commission on Environmental Quality (TCEQ) and Texas Water Well Drillers and Pump Installers requirements and supplemented with Standard Operating Procedures as included in the SBP.

3.1 Soil Borings

Twenty-four soil borings, EB-01 through EB-24, were advanced during the investigation in January-February 2019 to supplement the existing information related to geologic and hydrogeologic characteristics of the Landfill property and to further define these characteristics beneath the Landfill expansion area. The boring locations are summarized in Table 3-1 and shown on Figure 3-1. The soil borings were advanced as follows to approximately 5 feet below or 30 feet (or deeper) below the initial estimated elevation of deepest excavation (EDE) of 31 feet amsl in the Landfill expansion area (the initial estimated EDE was based on the existing Landfill EDE; design of the Landfill expansion area and the resultant EDE of the Landfill expansion area are discussed in Section 4.3 of the Part III Landfill Permit Application text):

- Eleven soil borings (EB-03, EB-05, EB-07, EB-09, EB-10, EB-12, EB-14, EB-15, EB-18, EB-20, and EB-22) were advanced to approximately 37 feet below ground surface (bgs) (approximately 25 feet amsl; approximately five feet below the bottom of the EDE).
- Thirteen soil borings (EB-01, EB-02, EB-04, EB-06, EB-08, EB-11, EB-13, EB-16, EB-17, EB-19, EB-21, EB-23, and EB-24) were advanced to at least approximately 67 feet bgs (approximately five feet below mean sea level [bmsl]; at least 30 feet below the bottom of the EDE). Nine of these soil borings (EB-02, EB-04, EB-06, EB-13, EB-16, EB-17, EB-19, EB-21, and EB-23) were advanced to depths ranging from 87 feet bgs (approximately 25 feet bmsl) (deeper than 30 feet below the bottom of the EDE) to approximately 102 feet bgs to identify the lower boundary of the uppermost groundwater-bearing zone. Six of these soil borings (EB-01, EB-08, EB-11, EB-17, EB-19, and EB-24) were completed as piezometers.

Drilling was performed by Braun Intertec Services, a Texas-licensed driller using rotary wash techniques. Split spoon sampling was performed every five feet at each boring, with four of the deep borings (EB-02, EB-13, EB-21, and EB-23) continuously split spoon sampled to the total depth of the boring. Drilling, sampling, and investigation equipment was decontaminated prior to beginning field activities and between locations where piezometers were installed. A field geologist classified the soil samples collected in accordance with the Unified Soil Classification System (USCS). Copies of boring logs are included in Appendix 5C.

3.2 Piezometers

Six of the soil borings (EB-01, EB-08, EB-11, EB-17, EB-19, and EB-24) were completed as piezometers for periodic measurements of water levels in the uppermost groundwater-bearing zone. This information was used in conjunction with current Landfill groundwater elevation data to evaluate groundwater elevation and flow direction beneath the Landfill expansion area. The piezometers were constructed to monitoring well standards (30 TAC §330.421(a)), as they may be used as monitoring wells in the future to be included in the site monitoring network.

Piezometers were constructed of 2-inch diameter schedule 40 polyvinyl chloride casing and screen (10-foot screen length with 0.010-inch screen size) with flush-threaded joints. Filter pack sand (20/40 size) was installed from bottom of the piezometer screen to approximately two feet above the top of the screen. A minimum two-foot bentonite seal was installed on top of the filter pack and cement/bentonite grout from the top of the bentonite seal to within two feet of ground surface emplaced using tremie methods. Piezometers were completed as above-grade surface completions with a locking protective cover placed in a minimum six-inch thick by four-foot square concrete pad with four protective posts/bollards installed around the outside of the pad. Piezometer construction data is presented on Table 3-2 and copies of piezometer construction diagrams and TWDB Submitted Drillers Reports are included in Appendix 5D.

Piezometer development was performed to remove fine particles and sediment from the screen and filter pack and promote hydraulic connection between the piezometer and the aquifer. Development started at least 24 hours after final grouting of the piezometer and was performed using surge and pump methods.

3.3 Soil Laboratory Testing

Select soil samples obtained from the drilling activities were tested in a geotechnical soils laboratory to evaluate the engineering properties of the soil and to aid in classifying the soils encountered during drilling. Samples for geotechnical laboratory analysis were collected from each soil layer encountered, including those that will compose the bottom and side of the expansion and from soil layers that are less than 30 feet below the EDE. Soil samples for laboratory analysis were spread on the ground surface near each respective boring. Geotechnical testing was performed by TSI Laboratories, Inc., of Victoria, Texas.

The laboratory test results are shown in Table 3-3 and geotechnical laboratory reports are included in Appendix 5E.

3.4 Water Level Measurements

Water levels were measured at the six EB- piezometers in conjunction with the existing Landfill semiannual detection, assessment, and corrective action monitoring activities. During the February 2019 monitoring event, water levels were measured at the existing monitoring wells on February 12-13, 2019, and at the EB- piezometers on February 15-16, 2019 (piezometer construction was completed after the water level measurements in the existing wells were conducted). During the subsequent Landfill monitoring events, water levels were measured at the existing monitoring wells and the EB- piezometers during the same gauging event as follows: August 6-7, 2019; February 25-27, 2020; August 4, 2020; March 1, 2021; and September 8, 2021. Water level measurements and groundwater elevations for the newly installed piezometers are presented on Table 3-2. Water level measurements for the existing semi-annual detection, assessment, and corrective action monitoring activities are included in the corresponding reports as noted in Section 4.0.

3.5 Surveying

The horizontal locations and vertical elevations of the investigation soil borings and piezometers were surveyed by CivilCorp, LLC of Victoria, Texas, a Texas registered land surveying firm. The soil boring and piezometer ground surface elevations were surveyed to the nearest 0.1-foot and the piezometer top of casing elevations and concrete pad elevations were surveyed to the nearest 0.01-foot. A copy of the survey report is included in Appendix 5F.

3.6 Boring Abandonment

Completed borings not completed with piezometers were sealed with a high-solids bentonite grout slurry in accordance with the Texas Water Well Drillers and Pump Installers requirements. The bentonite slurry was emplaced into the boring using a tremie pipe from the bottom of the borehole upward, taking care to keep the bottom of the tremie pipe submerged below the top of the slurry. The abandoned borings were backfilled with bentonite slurry to within two feet of the land surface, and then backfilled with native soil to surface grade level.

3.7 Management of Investigation Derived Waste

The following procedures were used for management of investigation derived waste generated during this investigation and were based on previous investigative soil borings for soil management at the Landfill

and the current Groundwater Sampling and Analysis Plan (Weaver Boos Consultants, LLC-Southwest, 2013) for liquid management:

- Drill cuttings or excess soil samples were spread on the ground near the boring.
- Water generated from decontamination activities was disposed of on the ground surface.
- Water removed or generated from the borings and piezometer development was disposed of at the active working face of the Landfill.

4.0 HYDROGEOLOGIC INVESTIGATION RESULTS AND SITE INFORMATION 30 TAC §330.63(e)(5)

Subsurface conditions observed during the hydrogeologic investigation are presented in the following sections. In addition to data obtained during this investigation, existing site information from previous investigations and activities performed at the Landfill were reviewed and incorporated into this discussion.

Information for the Landfill is included in previous documents listed below and is summarized in the 1997 SDP (JFK Group, Inc., 1997) (see Appendix 5A):

- Subsurface Investigation, 160-Acre Sanitary Landfill near Victoria, Texas (Trinity Engineering Testing Corporation, 1980)
- *Geotechnical Investigation, Type I Municipal Solid Waste, Victoria, Texas* (Resource Engineering, Inc., 1982)
- Monitoring Well Services, City of Victoria Landfill, Permit No. 1522, Victoria, Texas (Professional Service Industries, Inc., 1992)
- Landfill gas monitoring probe installation (Morris-Knudsen, 1993)
- Piezometer Installation Report, City of Victoria Landfill, Victoria County, MSW Permit No. 1522 (EMCON Engineering and Environmental Services, 1996)

Additional site information is presented in the *City of Victoria Landfill Victoria County, Texas TCEQ Permit No. MSW-1522A, Permit Modification* (SCS Engineers, 2009) (see Appendix 5A), the *Report on Assessment of Corrective Measures for Exceedances of Arsenic in Groundwater, Victoria Landfill, MSW Permit No. 1522A, Victoria County, Texas* (Hydrex Environmental, Inc. 2011), and in groundwater monitoring reports prepared by Hydrex Environmental, Inc. from 2008 to 2021.

4.1 Site Geology

Subsurface conditions observed during the investigation of the Landfill expansion area were consistent with previous investigations at the adjacent Landfill. Data from borings advanced during previous investigations of the Landfill, including eight monitoring well and observation well borings (MW-15A, MW-16, MW-17, MW-18, MW-21, MW-22, OW-27, and OW-28) advanced along a portion of the northern perimeter of the Landfill expansion area (shared boundary with the southern perimeter of the Landfill), is also incorporated into the subsurface conditions discussion. The borings advanced during the investigation of the Landfill expansion area (borings identified with the "EB-" prefix) generally encountered clays and sand with USCS classifications of CL (clay/sandy clay, silty clay with trace to

medium plasticity), CH (clay with high plasticity), SM (silty sand), SC (clayey sand), and SP (poorly graded sand) as described below. A summary of borings completed during this investigation is presented in Table 3-1. Copies of boring logs are included in Appendix 5B. Site geologic cross-sections are included as Figures 4-1 and 4-2 and cross-section transects are included on Figure 3-1. A summary of previous borings, boring locations, boring logs, and cross-sections from historical documents are presented in Appendix 5G.

Subsurface conditions encountered during the investigation (presented in order encountered from ground surface to termination depth of the borings) consisted of the following:

- Clay from ground surface (elevation 67.4 to 56.2 feet amsl) to 5 to 36 feet bgs (elevation 58.2 to 27.1 feet amsl). Thickness of the clay varied across the site with borings in the northeast and central portions and along the southwest boundary of the site generally showing a greater thickness (approximately 16 to 36 feet in Borings EB-02 through EB-15, EB-17, EB-23, and EB-24) and borings in the southwest portion and one boring along the northeast boundary of the site showing a lesser thickness (approximately 2 to 14 feet) in Borings EB-01, EB-16, and EB-18 to EB-22. Boring EB-06 (located in the compost operations area) encountered approximately 5 to 8 feet of fill/compost materials prior to encountering clay. Descriptions of the clay included: clay, clay some/with silt, clay some/with sand, and clay some fine sand and silt.
 - In the eight historical borings along the northern perimeter of the Landfill expansion area, this clay was observed from ground surface (elevation 68 to 63 feet amsl) to 15 to 40 feet bgs (elevation 51 to 28 feet amsl).
- Sand encountered between 8 to 36 feet bgs (elevation 55.2 to 27.1 feet amsl) and extending to 30 to 50 feet bgs (elevation 33.2 to 16 feet amsl) with thicknesses varying between approximately 2 to 35 feet. Thickness of the sand varied across the site with six borings in the north, west, and central portions of the site generally showing a greater thickness (approximately 15 to 35 feet). Eight borings generally along the south, east, and southwest boundary of the site (Borings EB-08, EB-11, EB-12, EB-13, EB-17, EB-18, EB-23, and EB-24) and one boring along the north boundary (Boring EB-04) encountered less sand (approximately 2 to 12 feet). Descriptions of the sand included: sand, sand trace/some silt, and sand trace/some/with clay. As discussed further below, this sand was underlain by a clay, or where the clay unit was not observed, by sand.
 - The entire thickness of this sand was not penetrated at nine borings (EB-03, EB-05, EB-07, EB-09, EB-10, EB-14, EB-15, EB-20, and EB-22) due termination depth of borings being reached prior to penetrating the thickness of the sand. At least 9 feet of sand was encountered at each of these locations prior to boring termination.

- In the eight historical borings along the northern perimeter of the Landfill expansion area, this sand was encountered in five of the eight borings between 15 to 40 feet bgs (elevation 51 to 28 feet amsl) and extending to 25 to 45 feet bgs (elevation 38.6 to 23 feet amsl) with thicknesses varying between approximately 5 to 15 feet. This sand was not present in one boring (MW-21) and graded into the deeper sand layer discussed below in two borings (MW-16 and OW-28) due to the absence of the underlying clay layer.
- Clay encountered between 33 and 48 feet bgs (elevation 30.2 to 14.1 feet amsl) and extending to 37 to 54 feet bgs (25.6 to 8.9 feet amsl) with thicknesses varying between approximately 2 to 20 feet. Thickness of the clay was 2 to 4 feet in six of the eight borings where it was observed (five borings along the south and east boundary [Borings EB-12, EB-13, EB-17, EB-18, and EB-21]; and one boring along the north boundary [Boring EB-04]). At Borings EB-23 and EB-24, located along the southwest boundary of the site, the clay thickness was 20 and 12 feet, respectively. Descriptions of the clay included clay with silt and clay with sand.
 - This clay was not observed at seven boring locations (EB-01, EB-02, EB-06, EB-08, EB-11, EB-16, and EB-19).
 - Nine borings (EB-03, EB-05, EB-07, EB-09, EB-10, EB-14, EB-15, EB-20, and EB-22) reached termination depth without this clay being observed.
 - This clay was encountered in six of the eight historical borings along the northern perimeter of the Landfill expansion area between 25.5 to 45 feet bgs (elevation 38.1 to 23 feet amsl) and extending to 40 to 58.5 feet bgs (elevation 25 to 5 feet amsl) with thicknesses varying between 5 to 33 feet. This clay was not present in two borings (MW-16 and OW-28).
- Sand (upper groundwater-bearing unit) observed in 13 borings between 38 and 54 feet bgs (elevation 25.3 to 8.9 feet amsl) and extending to 62 to 87 feet bgs (elevation 1.9 feet amsl to 24.7 feet bmsl) with thicknesses varying between approximately 10 to 47 feet.
 - In the seven borings noted previously (EB-01, EB-02, EB-06, EB-08, EB-11, EB-16, and EB-19) where the clay overlying this sand (upper groundwater-bearing unit) was not observed, the upper sand layer (described previously) graded into this sand layer (upper groundwater-bearing unit).
 - Eleven borings (EB-03, EB-05, EB-07, EB-09, EB-10, EB-12, EB-14, EB-15, EB-18, EB-20, and EB-22) were terminated prior to this sand layer being observed.
 - This sand layer was encountered in the eight historical borings along the northern perimeter of the Landfill expansion area between 31 to 58.5 feet bgs (elevation 32 to 5.1 feet amsl) and extending to 53.5 to 66.5 feet bgs (elevation 12.5 feet amsl to 2.7 feet bmsl) with thicknesses varying between 4 to 32.5 feet.

- Clay (lower confining unit) observed in five of the six borings between 62 and 73 feet bgs (elevation 1.9 feet amsl to 10.9 feet bmsl) and at 88 feet bgs (elevation 24.7 feet bmsl) at one boring (EB-19). Descriptions of the material observed included clay some/with sand and clay some/with silt. With the exception of EB-19, which was terminated upon observation of the clay layer near the planned boring depth, the other five borings were advanced deeper to characterize the lower confining unit and generally encountered intervals of sand and clay.
 - Eighteen borings were terminated prior to encountering this clay.
 - This clay was observed between 62.5 and 69 feet bgs (elevation 4 feet amsl to 3 feet bmsl) in five of the eight historical borings along the northern perimeter of the Landfill expansion area (not observed at MW-15A, MW-21, and OW-28, all of which were terminated in sand between 55-60 feet bgs [elevation 9 to 6 feet amsl]).

4.2 Site Hydrogeology

The six piezometers installed during the hydrogeologic investigation (EB-01, EB-08, EB-11, EB-17, EB-19, and EB-24) were gauged in conjunction with the current Landfill semi-annual monitoring program (typically conducted in February and August) and groundwater elevation data was used to evaluate conditions beneath the Landfill expansion area. The six EB- piezometers were completed following the initiation of the February 2019 Landfill monitoring program, consequently the EBpiezometers were gauged several days after the Landfill monitoring program wells. Gauging of the EBpiezometers and the Landfill monitoring/observation wells was conducted in the same gauging event during August 2019, February 2020, August 2020, March 2021, and September 2021. Water level measurements for the EB- piezometers for February 2019 through September 2021 are included in Table 3-2 and groundwater elevation maps are presented as Figures 4-3 through 4-8. Estimated hydraulic gradients and linear groundwater velocity flow rates for the EB- piezometers are summarized in Table 4-1 and calculations are presented in Appendix 5H. Water level measurements, groundwater elevation maps, and groundwater flow rate calculations for the 2019 and 2021 Landfill monitoring events are included in reports Appendix 5I. Groundwater flow direction across the Landfill expansion area was generally to the southwest during each event, consistent with historical data from Landfill monitoring events. Groundwater flow in the northeast portion of the Landfill expansion area indicated a northeast flow direction during two gauging events (August 2019 and September 2021). Groundwater elevations from February 2019 through September 2021 varied from a low of 22.71 feet amsl (in March 2021) to a high of 33.50 feet amsl (in August 2020). Groundwater gradient and flow rate from February 2019 through September 2021 ranged from 0.00089 to 0.0012 and 50.95 to 67.21 feet/year, respectively.

During the August 2019 and February 2020 gauging events, pumping associated with dewatering to support construction of a new landfill cell (Trench 6) affected groundwater resulting in atypical groundwater flow directions and elevations across portions of the Landfill expansion area (and the existing Landfill. Upon cessation of pumping, groundwater flow direction and elevations returned to typical conditions. The Landfill soil borrow source area may also influence groundwater elevations in nearby piezometers (EB-08 and EB-11) via increased infiltration and recharge due the removal of surficial, low permeability, clay material and accumulation/ponding of water in the Landfill soil borrow source area.

As described in the *Report on Assessment of Corrective Measures for Exceedances of Arsenic in Groundwater, Victoria Landfill, MSW Permit No. 1522A, Victoria County, Texas* (Hydrex, 2011), unconfined groundwater conditions occur at the northeastern portion of the Landfill in areas where clay is absent or minimal between the sand units and locally confined conditions occur at the southwest portion of the Landfill where clay is present between the sand units. Similar conditions were observed at EB- piezometers as noted in the previous section: the clay layer between the sand units was not observed at the three piezometers (EB-01, EB-08, and EB-11) in the north/east portion of the Landfill expansion area, or at piezometer EB-19 in the south/west portion of the Landfill expansion area; the clay between the sand units was observed at two piezometers (EB-17 and EB-24) in the southwest portion of the Landfill expansion area.

A summary of Landfill monitoring program groundwater elevations, gradients, and flow rates calculated by Hydrex Environmental, Inc. from December 2007 to March 2021 and groundwater elevation tables and figures from the 2007 to 2021 Hydrex Environmental, Inc. groundwater monitoring reports are included in Appendix 5I. The current monitoring network at the Landfill includes 18 monitoring wells and four observation wells. Groundwater elevations reported by Hydrex Environmental, Inc. from December 2007 through September 2021 varied from a low of 22.72 feet amsl (in February 2015) to a high of 32.26 feet amsl (in March 2011). Groundwater flows from the northeast to the southwest (as mentioned above, pumping associated with new Landfill cell construction affected groundwater elevations resulting in atypical groundwater flow directions and elevations across portions of the site during the August 2019 and February 2020 monitoring events). Groundwater gradient and flow rate from September 2011 through March 2021 ranged from 0.0008 to 0.0012 and 46.17 to 68.46 feet/year, respectively. Historical groundwater elevations and monitoring data from monitoring wells in the Landfill monitoring program are included in Appendix 5J.

4.3 Soils Laboratory Testing

Select soil samples obtained from drilling activities were tested by TSI Laboratories, Inc. to determine engineering properties of the soil and to aid in classifying the soils encountered during drilling. Soil samples were labeled in the field according to the boring date and time, boring number, depth, and field classification by the field geologist. The laboratory test results are shown in Table 3-3 and geotechnical laboratory reports are included in Appendix 5D. Permeability results are summarized below:

- Upper (surficial) clay layer ranged from 1.3×10^{-8} to 1.3×10^{-9} cm/s
- Upper sand layer (intervals with clay present) ranged from 2.1×10^{-6} to 3.5×10^{-8} cm/s
- Middle (intermediate) clay layer ranged from 1.4×10^{-8} to 5.1×10^{-9} cm/s
- Deep clay (lower confining unit) ranged from 6.7×10^{-7} to 6.4×10^{-8} cm/s

Discussion of the suitability of soils and the uses for which they are intended are included in Attachment 7 Slope Stability and Settlement Analysis.

5.0 REFERENCES

- Burns & McDonnell. (2018, October). Soil Boring Plan, City of Victoria, Texas, City of Victoria Landfill Expansion.
- EMCON Engineering and Environmental Services. (1996, May). Piezometer Installation Report, City of Victoria Landfill, Victoria County, MSW Permit No. 1522.
- Hydrex Environmental, Inc. (2008a, January). Groundwater Monitoring Report, The City of Victoria Landfill, MSW Permit No. 1522A, Victoria, County, Texas.
- Hydrex Environmental, Inc. (2008b, April). Groundwater Monitoring Report, The City of Victoria Landfill, MSW Permit No. 1522A, Victoria, County, Texas.
- Hydrex Environmental, Inc. (2008c, July). Groundwater Monitoring Report, The City of Victoria Landfill, MSW Permit No. 1522A, Victoria, County, Texas.
- Hydrex Environmental, Inc. (2008d, October). Groundwater Monitoring Report, The City of Victoria Landfill, MSW Permit No. 1522A, Victoria, County, Texas.
- Hydrex Environmental, Inc. (2009, October). Annual Report on Groundwater Sampling and Analysis for 2009, The City of Victoria Landfill, MSW Permit No. 1522A, Victoria, County, Texas.
- Hydrex Environmental, Inc. (2010, October). Annual Report on Groundwater Sampling and Analysis for 2010, The City of Victoria Landfill, MSW Permit No. 1522A, Victoria, County, Texas.
- Hydrex Environmental, Inc. (2011, August). Report on Assessment of Corrective Measures for Exceedances of Arsenic in Groundwater, Victoria Landfill, MSW Permit No. 1522A, Victoria County, Texas.
- Hydrex Environmental, Inc. (2012a, February). 2011 Annual Corrective Action Monitoring Report, The City of Victoria Landfill, MSW Permit No. 1522A, Victoria, County, Texas.
- Hydrex Environmental, Inc. (2012b, December). 2012 Annual Corrective Action Monitoring Report, The City of Victoria Landfill, MSW Permit No. 1522A, Victoria, County, Texas.

- Hydrex Environmental, Inc. (2013, October). 2013 Annual Detection, Assessment, and Corrective Action Groundwater Monitoring Report, City of Victoria Landfill, MSW Permit No. 1522A, Victoria, County, Texas.
- Hydrex Environmental, Inc. (2014, October). 2014 Annual Detection, Assessment, and Corrective Action Groundwater Monitoring Report, City of Victoria Landfill, MSW Permit No. 1522A, Victoria, County, Texas.
- Hydrex Environmental, Inc. (2015, September). 2015 Annual Detection, Assessment, and Corrective Action Groundwater Monitoring Report, City of Victoria Landfill, MSW Permit No. 1522A, Victoria, County, Texas.
- Hydrex Environmental, Inc. (2016, September). 2016 Annual Detection, Assessment, and Corrective Action Groundwater Monitoring Report, City of Victoria Landfill, MSW Permit No. 1522A, Victoria, County, Texas.
- Hydrex Environmental, Inc. (2017, September). 2017 Annual Detection, Assessment, and Corrective Action Groundwater Monitoring Report, City of Victoria Landfill, MSW Permit No. 1522A, Victoria, County, Texas.
- Hydrex Environmental, Inc. (2018, September). 2018 Annual Detection, Assessment, and Corrective Action Groundwater Monitoring Report, City of Victoria Landfill, MSW Permit No. 1522A, Victoria, County, Texas.
- Hydrex Environmental, Inc. (2019, October). 2019 Annual Detection, Assessment, and Corrective Action Groundwater Monitoring Report, City of Victoria Landfill, MSW Permit No. 1522A, Victoria County, Texas.
- Hydrex Environmental, Inc. (2020, October). 2020 Annual Detection, Assessment, and Corrective Action Groundwater Monitoring Report, City of Victoria Landfill, MSW Permit No. 1522A, Victoria County, Texas.
- Hydrex Environmental, Inc. (2021, April). 1st 2021 Semi-Annual Detection, Assessment, and Corrective Action Groundwater Monitoring Report, City of Victoria Landfill, MSW Permit No. 1522A, Victoria County, Texas.

- JFK Group, Inc. (1997, January). Site Development Plan (SDP) Attachment 4 Geology Report, City of Victoria Landfill, TNRCC Permit No. MSW-1522, Height of Fill Amendment. May 1996. Revised October 1996. Revised January 1997.
- Marvin, R.F., Shafer, G.H., Dale, O.C (1962, January) *Texas Board of Water Engineers, Bulletin* 6202, *Groundwater Resources of Victoria and Calhoun Counties, Texas.*
- Morris-Knudsen. (1993). Landfill gas monitoring probe installation (excerpts included in Site Development Plan (SDP) Attachment 4 Geology Report, City of Victoria Landfill, TNRCC Permit No. MSW-1522, Height of Fill Amendment (JFK Group, Inc., 1997).
- Parsons (2015). E.I. du Pont de Nemours and Company, Victoria Plant Industrial and Hazardous Waste Permit Number 50056 Renewal Application, Part B, Section IV Geology Report. November 2015.
- Petersen, M., Mueller, C., Moschetti, M., Hoover, S., Rukstales, K., McNamara, D., Williams, R., Shumway, A., Powers, P., Earle, P., Llenos, A., Michael, A., Rubinstein, J., Norbeck, J., Cochran, E. (2018). 2018 One-year seismic hazard Forecast for the central and eastern United States from induced and natural earthquakes. *Seismological Research Letters*, 89 (3), 1049-1061. Retrieved 23 July 2019 from https://www.usgs.gov/media/images/2018-induced-seismicityhazard.
- Petersen, M., Shumway, A., Powers, P., Mueller, C., Moschetti, M., Frankel, Rezaeian, S., McNamara, D., Luco, N., Boyd, O., Rukstales, K., Jaiswal, K., Thompson, E., Hoover, S., Clayton, B., Field, E., and Zeng, Y. (2019). The 2018 update of the United States national seismic hazard model: overview of model and implications. Earthquake Spectra. Retrieved 12 October 2021 from https://journals.sagepub.com/doi/pdf/10.1177/8755293019878199.
- Professional Service Industries, Inc. (1992, July). *Monitoring Well Services, City of Victoria Landfill, Permit No. 1522, Victoria, Texas.*
- Ratzlaff, K. (1982, November). *Land-surface subsidence in the Texas coastal region* (Texas Department of Water Resources Report 272).
- Resource Engineering, Inc. (1982). Geotechnical Investigation, Type I Municipal Solid Waste, Victoria, Texas.

SCS Engineers. (2009, April). City of Victoria Landfill, Victoria County, Texas, TCEQ Permit No. MSW-1522A Permit Modification.

Texas Water Development Board. (2006, February). Report 365, Aquifers of the Gulf Coast of Texas.

Texas Water Development Board. (2011, July). Report 380, Aquifers of Texas.

- Texas Water Development Board. (no date). *Water Data Interactive, Groundwater Data Viewer*. Retrieved 15 Oct 2021 from https://www3.twdb.texas.gov/apps/WaterDataInteractive/GroundWaterDataViewer.
- The University of Texas at Austin. (1987). Bureau of Economic Geology, Geologic Atlas of Texas, Beeville – Bay City Sheet, Revised 1987. Retrieved 23 July 2019 from http://www.twdb.texas.gov/groundwater/aquifer/GAT/beeville-bay-city.htm.
- The University of Texas at Austin. (1994). Bureau of Economic Geology, Tectonic Map of Texas, State Map SM 4.
- The University of Texas at Austin. (no date). Regional hazard assessment, South-Central Texas. Retrieved 23 July 2019 from http://www-udc.ig.utexas.edu/external/TXEQ/southcentral.html.
- Trinity Engineering Testing Corporation. (1980). Subsurface Investigation, 160-Acre Sanitary Landfill near Victoria, Texas.
- United States Department of Agriculture. (no date). Natural Resources Conservation Service, Web Soil Survey. Retrieved 08 May 2021 from https://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx.

United States Geological Survey (2018). 2018 Long-term National Seismic Hazard Map.

- United States Geological Survey. (2019). Bloomington Quadrangle, Texas Victoria County, 7.5-minute series.
- United States Geological Survey. (no date). Quaternary Faults Web Application. Retrieved 08 May 2021 from https://usgs.maps.arcgis.com/apps/webappviewer/index.html?id= 5a6038b3a1684561a9b0aadf88412fcf

Victoria County Groundwater Conservation District. (2018, July). Management plan.

- Weaver Boos Consultants, LLC-Southwest. (2013, August). City of Victoria Landfill, Victoria County, Texas, MSW Permit No. 1522A, Site Development Plan Part III, Attachment 11, Groundwater Sampling and Analysis Plan.
- Wood, Leonard A., Gabrysch, R.K., Marvin, Richard (1963, June) Texas Water Commission, Bulletin 6305, Reconnaissance Investigation of the Groundwater Resources of the Gulf Coast Region, Texas.

TABLES

Table 3-1 Soil Boring Summary

Victoria Landfill Expansion Victoria County, Texas

	Northing	Easting	Ground Surface Elevation (feet above mean sea level)	Boring Depth (feet below ground surface)	Boring Depth Elevation (feet above mean sea level)
ID	(TX83-SCF)	(TX83-SCF)	(NAVD88)	(NAVD88)	(NAVD88)
EB-01	13442437.81	2643817.214	62.0	67	-5
EB-02	13441678.37	2643849.85	61.9	88	-26.1
EB-03	13441952.68	2643230.03	64.4	37	27.4
EB-04	13442829.13	2643005.7	62.3	87	-24.7
EB-05	13442071.13	2642394.989	62.9	37	25.9
EB-06	13441621.93	2642706.678	67.4	95	-27.6
EB-07	13441135.03	2643063.232	62.6	37	25.6
EB-08	13440629.72	2642843.151	61.9	67	-5.1
EB-09	13440552.23	2642295.842	56.2	37	19.2
EB-10	13441642.93	2641822.793	63.3	37	26.3
EB-11	13440532.65	2641163.789	63.1	67	-3.9
EB-12	13440010.68	2641570.396	62.6	37	25.6
EB-13	13439433.1	2640793.747	63.1	88	-24.9
EB-14	13439942.32	2640467.14	63.4	37	26.4
EB-15	13440350.7	2640150.151	63.5	37	26.5
EB-16	13439284.65	2639576.785	64.0	87	-23
EB-17	13438595.87	2639999.39	62.1	87	-24.9
EB-18	13438298.99	2639259.956	62.6	37	25.6
EB-19	13438734.31	2638841.311	63.3	90	-26.7
EB-20	13439244.5	2638581.895	63.7	37	26.7
EB-21	13438660.85	2637726.276	63.9	88	-24.1
EB-22	13438260.57	2638153.95	63.2	37	26.2
EB-23	13437709.96	2638483.337	62.9	102	-39.1
EB-24	13437928.12	2637633.078	63.2	67	-3.8

Notes:

NAVD88 - North American Vertical Datum 1988

TX83-SCF - Texas State Plane, South Central Zone 4204

Survey coordinates and ground surface elevations provided by CivilCorp, LLC (see Appendix F for survey report).

Table 3-2 Piezometer Construction and Groundwater Level Data Victoria Landfill Expansion

Victoria County, Texas

			Top of	Ground		Depth to	Top of	Bottom of				
			Casing	Surface	Depth to top	Bottom of	Screen	Screen	Piezometer		Measured Depth	Groundwater
			Elevation	Elevation	of screen	Screen	Elevation	Elevation	Diameter		to Water	Elevation
Piezometer ID	Northing	Easting	(feet amsl)	(feet amsl)	(feet bgs)	(feet bgs)	(feet amsl)	(feet amsl)	(inches)	Date	(feet bTOC)	(feet amsl)
EB-01	13442437.814	2643817.214	64.02	62.0	43.0	53.0	19.0	9.0	2	February 2019	30.61	33.41
										August 2019	35.33	28.69
										February 2020	32.74	31.28
										August 2020	32.76	31.26
										March 2021	33.57	30.45
										September 2021	34.47	29.55
EB-08	13440629.720	2642843.151	64.04	61.9	50.0	60.0	11.9	1.9	2	February 2019	33.10	30.94
										August 2019	33.50	30.54
										February 2020	33.81	30.23
										August 2020	34.87	29.17
										March 2021	34.68	29.36
										September 2021	33.24	30.80
EB-11	13440532.652	2641163.789	64.54	63.1	50.0	60.0	13.1	3.1	2	February 2019	35.06	29.48
										August 2019	32.31	32.23
										February 2020	35.96	28.58
										August 2020	31.04	33.50
										March 2021	36.73	27.81
										September 2021	35.26	29.28
EB-17	13438595.874	2639999.390	64.25	62.1	45.0	55.0	17.1	7.1	2	February 2019	36.32	27.93
										August 2019	36.80	27.45
										February 2020	36.96	27.29
										August 2020	37.78	26.47
										March 2021	41.54	22.71
										September 2021	37.15	27.10
EB-19	13438734.306	2638841.311	65.31	63.3	40.0	50.0	23.3	13.3	2	February 2019	38.32	26.99
										August 2019	35.90	29.41
										February 2020	38.86	26.45
										August 2020	39.35	25.96
										March 2021	39.98	25.33
										September 2021	39.09	26.22
EB-24	13437928.121	2637633.078	65.10	63.2	45.0	55.0	18.2	8.2	2	February 2019	39.59	25.51
										August 2019	34.71	30.39
										February 2020	40.45	24.65
										August 2020	40.91	24.19
										March 2021	37.97	27.13
										September 2021	40.30	24.80

Notes:

amsl - above mean sea level

bgs - below ground surface

bTOC - below top of casing

Survey coordinates, top of casing elevations, and ground surface elevations provided by CivilCorp, LLC (see Appendix E for survey report).

Piezometers constructed with 2-inch diameter schedule 40 polyvinyl chloride casing and screen (0.010-inch slot screen size) and 20/40 filter pack sand.

Page 1 of 1

Table 3-3Soils Laboratory Testing SummaryVictoria Landfill ExpansionVictoria County, Texas

	Sample Depth	ASTM D4	22 Standar Ana	d Test Met	hod for Par pils	rticle-Size	ASTM D Methoo Plastic I	4318 Stanc ds for Liqui Limit, and F ndex of Soi	lard Test d Limit, Plasticity Is	ASTM D2216 Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass	ASTM D5084 Standard Test Methods for Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter
Boring ID	(feet bgs)	% Gravel	% Sand	P200	% Silt	% Clay	LL	PL	PI	Moisture Content (%)	Hydraulic Conductivity (cm/s)
EB-01	3	0.0	23.6	76.4	29.8	46.6					
EB-01	23	0.0	85.5	14.5	14.0	0.5					
EB-01	50						21	13	8		
EB-02	34	0.8	76.4	22.8	16.0	6.8					
EB-06	8						82	31	51	30%	
EB-06	13-15									29.7%	1.3E-08
EB-06	33	0.0	22.7	77.3	44.7	32.6					
EB-06	43	0.0	85.8	14.2	8.0	6.2					
EB-06	73	0	57.5	42.5	11.1	31.4	65	22	43		
EB-06	78-80			-						15.0%	6.4E-08
EB-08	8	0	6.6	93.4	24.7	68.7					
EB-08	28	0	85.4	14.5	7.5	7.0					
EB-08	33-35			-						13.9%	2.1E-06
EB-08	38						17	nonplastic	nonplastic		
EB-11	8	0	3.8	96.2	31.3	64.9					
EB-11	28	0	73	27	13.6	13.4					
EB-11	33-35									12.2%	3.5E-08
EB-11	38						16	nonplastic	nonplastic		
EB-13	0-2									37.3%	2.7E-09
EB-13	32	0	27.6	72.4	46.7	25.7					
EB-13	40	0	87.2	12.8	11.3	1.5					
EB-13	78	0.8	86.4	12.8	8.1	4.7					
EB-14	5						73	24	49	34.0%	
EB-16	38	0.7	86.2	13.1	7.8	5.3					
EB-17	8	0	29.9	70.1	23.2	46.9					
EB-17	18	12.5	79	8.5	6.7	1.8					
EB-17	23	0	6.4	93.6	34.6	59.0	67	20	47		
EB-17	85						42	15	27		
EB-17	85-87									18.8%	6.7E-07
EB-19	33-35									16.1%	6.2E-08
EB-21	2-4									34.3%	1.3E-09
EB-21	4						85	29	56		
EB-21	38	0.1	49.6	50.3	38.6	11.7	86	35	51		
EB-21	56	0	81.2	18.8	15.1	3.7					

Table 3-3Soils Laboratory Testing SummaryVictoria Landfill ExpansionVictoria County, Texas

	Sample Depth	ASTM D42	22 Standar Ana	d Test Meti alysis of So	hod for Par bils	rticle-Size	ASTM D4318 Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils			ASTM D2216 Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass	ASTM D5084 Standard Test Methods for Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter
Boring ID	(feet bgs)	% Gravel	% Sand	P200	% Silt	% Clay	LL	PL	PI	Moisture Content (%)	Hydraulic Conductivity (cm/s)
EB-21	84	0	28.9	71	43.7	27.3					
EB-23	34	0	1.6	98.4	61.6	36.8					
EB-23	48-50									14.7%	5.1E-09
EB-23	100	0	0.8	99.2	36.9	62.3					
EB-24	3	0	11.2	88.8	29.2	59.6					
EB-24	28	0	25	75	50.6	24.4					
EB-24	33-35									26.7%	1.4E-08

Notes:

ASTM - ASTM International

cm/s - centimeters per second

LL - liquid limit

PI - plasticity index

PL - plastic limit

% - percent

PL - plastic limit

Table 4-1 Groundwater Elevations, Gradient, and Flow Rate - Expansion Borings February 2019 - September 2021

Victoria Landfill Expansion Victoria County, Texas

Date	Grou Elevat (feet abo	undv tion ove r evel	vater Range nean sea)	Groudwater Gradient (feet/feet)	Groudwater Flow Rate (feet/year)
9/7/2021	24.80	-	30.80	0.0010	58.67
3/1/2021	22.71	-	30.45	0.00089	50.95
8/4/2020	24.19	-	33.50 ¹	0.00095	54.00
2/25-27/2020	24.65	-	31.28	0.00099	56.41
8/6-7/2019	27.45	-	32.23	0.0012	67.21
2/15-16/2019	25.51	-	33.41	0.0010	57.92

Notes:

- 1. A groundwater elevation of 33.50 feet msl was reported in August 2020 at EB-11, but this value was considered anomalous and was not used in the preparation of the groundwater elevation figure.
- 2. Groundwater gradient and flow rate calculations presented in Appendix H using the following equations and inputs:

Estimated linear groundwater velocity calculated using equation:

$$V = \frac{k x i}{n_e}$$

Estimated hydraulic gradient calculated using equation:

- V = estimated linear groundwater velocity (ft/day)
- k = hydraulic conductivity
 - = 3.8E-02 ft/min
- i = estimated hydraulic gradient (ft/ft)
- n_e = effective porosity (percent)
 - = 0.35 (estimated for fine sand)
- dh = head difference between data points (ft)
- dL = horizontal distance between head difference (ft)
FIGURES

Path: Z:\Clients\ENS\CityVictoria\107608_LandfillPermit\Studies\Geospatial\DataFiles\ArcDocs\Figure1_Vicinity Map.mxd ewemmerich 9/17/2018 COPYRIGHT © 2018 BURNS & McDONNELL ENGINEERING COMPANY, INC. Service Layer Credits: Sources: Esri, HERE, Garmin, USGS, Intermap, INCREMENT P, NRCan, Esri Japan, METI, Esri China (Hong Kong), Esri Korea, Esri (Thailand), NGCC, © OpenStreetMap contributors, and the GIS User Community

Source: BMcD, ESRI The Application

Path: Z:\Clients\ENS\City\Victoria\107608_LandfillPermit\Studies\Geospatial\DataFiles\ArcDocs\ReportFigures\Figure1_2_SiteLayout.mxd vakarpov 10/6/2021 COPYRIGHT © 2021 BURNS & McDONNELL ENGINEERING COMPANY, INC. Service Layer Credits: Source: Esri, Maxar, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community

Source: ESRI; FEMA; USDAWRCS; USPWS NWI; USGS NHD; Burns & McDonnell Engineering Company, Inc Attachment

Path: Z:\Clients\ENS\CityVictoria\107608_LandfillPermit\Studies\Geospatial\DataFiles\ArcDocs\ReportFigures\Figure2_1_RegionalGeology.mxd vakarpov 10/7/2021 COPYRIGHT © 2021 BURNS & McDONNELL ENGINEERING COMPANY, INC. Service Laver Credits:

Path: Z:\Clients\ENS\CityVictoria\107608_LandfillPermit\Studies\Geospatial\DataFiles\ArcDocs\ReportFigures\Figures_2_RegionalCrossSection.mxd lacrain 11/25/2019 COPYRIGHT © 2019 BURNS & McDONNELL ENGINEERING COMPANY, INC. Service Layer Credits:

(Clients\ENS\CityVictoria\107608_LandfillPermit\Studies\Geospatia\\DataFiles\ArcDocs\ReportFigures\Figure2_3_RegionalStratigraphicColumn.mxd_lacrain_11/25/2019 IGHT © 2019 BURNS & McDONNELL ENGINEERING COMPANY, INC. Laver Credits:

Path: Z:\Clients\ENS\CityVictoria\107608_LandfillPermit\Studies\Geospatial\DataFiles\ArcDocs\WaterWells\Figure2_4_WaterWells.mxd_vakarpov_10/25/2021 Service Layer Credits: Source: Esri, Maxar, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community

Path: Z:\Clients\ENS\CityVictoria\107608_LandfillPermit\Studies\Geospatial\DataFiles\ArcDocs\Report\Figure 3-1_BoringLocations and Cross-Section Transects (Survey Points).mxd vakarpov 10/21/2021 COPYRIGHT © 2021 BURNS & McDONNELL ENGINEERING COMPANY, INC. Service Layer Credits: Source: Esri, Maxar, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community

Source: ESRI; FEMA, USDKINRCS, USPAS NWI; USGS NHD; Burns & McDonnell Engineering Company, Inc Autonment 3

evision 0, March 20, 2026 Ssued: 10/21/2021

GEOLOGIC CROSS-SECTION EB-24 TO EB-01

3MCD/DF3PUFITITEASCITIC/ATIOR/14522BANDFILLPERMIT/DESIGN/CADD/DWGS/FIGURES/GEOLOGY REPORT/CROSS SECTIONS.DWG 10/22/2021 8:55 AM ECLAPPER

Revision 0, March 28, 2022

18MCD/DF REIMINTAPPSICATIOD1 16228 608_LANDFILLPERMIT/DESIGN/CADD/DWGS/FIGURES/GEOLOGY REPORT/CROSS SECTIONS.DWG 10/22/2021 8:48 AM ECLAPPER

Attachment 5-37

Revision 0, March 28, 2022

Path: Z:\Clients\ENS\CityVictoria\107608_LandfillPermit\Studies\Geospatial\DataFiles\ArcDocs\Report\Figure 4-3_ Groundwater Elevation Map - February 2019.mxd vakarpov 10/6/2021 COPYRIGHT © 2021 BURNS & McDONNELL ENGINEERING COMPANY, INC. Service Layer Credits: Source: Esri, Maxar, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community

Feet

Current Landfill Boundary

Path: Z:\Clients\ENS\City\Victoria\107608_LandfillPermit\Studies\Geospatial\DataFiles\ArcDocs\Report\Figure 4-4_Groundwater Elevation Map - August 2019.mxd vakarpov 10/7/2021 COPYRIGHT © 2021 BURNS & McDONNELL ENGINEERING COMPANY, INC. Service Layer Credits: Source: Esri, Maxar, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community

Water level measurements collected on August 6-7, 2019.

Area

Stream / Ditch

Current Landfill Boundary

in atypical groundwater flow directions and elevations across portions of the proposed expansion area and the Landfill. Upon cessation of pumping, groundwater flow direction and elevations are anticipated to return to typical conditions.

1,000 0 1,000 500 Feet

August 2019 Victoria Landfill Expansion Victoria County, Texas

Path: Z:\Clients\ENS\CityVictoria\107608_LandfillPermit\Studies\Geospatia\DataFiles\ArcDocs\Report\Figure 4-5_ Groundwater Elevation Map - February 2020.mxd vakarpov 10/6/2021 COPYRIGHT © 2021 BURNS & McDONNELL ENGINEERING COMPANY, INC. Service Layer Credits: Source: Esri, Maxar, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community

Path: Z:\Clients\ENS\CityVictoria\107608_LandfillPermit\Studies\Geospatial\DataFiles\ArcDocs\Report\Figure 4-6_ Groundwater Elevation Map - August 2020.mxd vakarpov 10/7/2021 COPYRIGHT © 2021 BURNS & McDONNELL ENGINEERING COMPANY, INC. Service Layer Credits: Source: Esri, Maxar, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community

evision 0, March 20, 2022 Issued: 10/7/2021

Path: Z:\Clients\ENS\CityVictoria\107608_LandfillPermit\Studies\Geospatial\DataFiles\ArcDocs\Report\Figure 4-7_ Groundwater Elevation Map - March 2021.mxd vakarpov 10/7/2021 COPYRIGHT © 2021 BURNS & McDONNELL ENGINEERING COMPANY, INC. Service Layer Credits: Source: Esri, Maxar, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community

Source: ESRI; FEMA, USDAWRCS, USPAS NWI; USGS NHD; Burns & McDonnell Engineering Company, Inc Attachment S

tevision 0, March 20, 2022 Issued: 10/7/2021

Path: Z:\Clients\ENS\CityVictoria\107608_LandfillPermit\Studies\Geospatial\DataFiles\ArcDocs\Report\Figure 4-8_ Groundwater Elevation Map - September 2021.mxd vakarpov 10/7/2021 COPYRIGHT © 2021 BURNS & McDONNELL ENGINEERING COMPANY, INC. Service Layer Credits: Source: Esri, Maxar, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community

Source: ESRI; FEMA, USDAWRCS, USPAS NWI; USGS NHD; Burns & McDonnell Engineering Company, Inc Attachment 3-

evision 0, March 20, 2022 Issued: 10/7/2021

APPENDIX 5A – HISTORICAL LANDFILL INFORMATION

Permit Application 1522B

Attachment 5-45

Revision 0, March 28, 2022

Technical Summary

Part III §330.56(d) Attachment 4 Geology Report

Table of Contents

For Permitting Purposes Only

Introduction
1. Regional Physiography and Topography1
2. Regional Geology
3. Geologic Activity Present in the Vicinity
4. Regional Aquifers
5. Subsurface Investigation
6. Geotechnical Report
7. Groundwater Investigation Report
8. Description of Existing and Proposed Groundwater Monitoring System
9. Additional Attachments
4-A Beeville-Bay City Sheet, Geological Atlas of Texas
4-B Texas Board of Water Engineers Isopachous Map - Fresh or Slightly Saline Water Victoria and Calhoun Counties
4-C Appendix A - Geotechnical Investigation Resource Engineering, Inc., 1982
4-D Appendix B - Subsurface Investigation Trinity Engineering and Testing, Inc., 1980
4-E Groundwater Monitoring Well Installation Professional Services Industries, Inc.1992
4-F Landfill Gas Monitoring Probe Installation Morris-Knudsen, 1993
 4-G Piezometer Installation Location Map (Figure 2) Piezometer Installation Boring Logs EMCON Engineering and Environmental Services, 1996
4-H TNRCC Boring Plan Approval Letter

Geology Report

May 1, 1996 Revised January 13, 1997

Page i

Attachment 4 Geology Report

Technical Summary

Introduction (§330.56(d)):

The original geology report of this site was presented in the permit application in 1982. It consisted of sub-surface investigations by Trinity Engineering Testing Corporation (Trinity) in 1980 and by Resource Engineering, Inc. (REI), in 1982. Additional sub-surface investigations were conducted during the installation of five (5) groundwater monitoring wells by Professional Service Industries, Inc. (PSI), in 1992. More sub-surface information was obtained during the installation of fifteen (15) landfill gas monitoring probes by Morris-Knudsen in 1993 and the installation of eleven (11) piezometers by EMCON Engineering and Environmental Services (EMCON) in 1995/1996.

Geological reports were prepared by Trinity and REI. These geologic reports along with copies of the logs of the other three (3) sub-surface investigations accompany Attachment 4.

The following is a condensation of a portion of the five reports. Additional regional information is included.

1. Regional Physiography and Topography (§330.56(d)(1)):

The City of Victoria Landfill is located in South Texas in the central region of the Gulf Coastal Plain in Victoria County. Victoria County is generally bounded on the east by Jackson County; on the south by Calhoun and Refugio Counties; on the west by Goliad and Dewitt Counties and the north by Lavaca County.

The site generally slopes gently to the south and southeast at a rate of approximately 0.2 %. Original surface elevations ranged from 64' M.S.L. on the north side of the site to 62' M.S.L. on the south. The site lies approximately 12 miles northwest of Lavaca Bay, eight (8) miles from Green Lake, and six (6) miles east of the Guadalupe River. The site drains to a series of natural and manmade structures to Chocolate Bayou. Chocolate Bayou eventually drains into Lavaca Bay. No part of the site lies in the hundred year flood plain.

2. Regional Geology (§330.56(d)(2)):

(A) The Beeville-Bay City Sheet, revised 1975, with text describing the stratigraphy and lithology of the map units, from the Geological Atlas of Texas prepared by the Bureau of Economic Geology, can be found in Attachment 4A.

(B) Generalized Stratigraphic Column:

The site of the landfill lies within the Texas Coastal Plain and is located on the Beaumont clay formation, a deltaic nonmarine Pleistocene deposit. The Beaumont clay is a heterogenous formation, containing thick interbedded layers of clay, fine sand, and silt. The clay fraction is primarily composed of montmorillonite, illite, caolinite, and finely ground quartz. The clay present in the formation has been pre-consolidated by a process of desiccation, and is highly plastic and of low permeability. The sands and silts, which vary

Geology Report

Prepared by: JFK GROUP, INC.

May 1, 1996 Revised January 13, 1997

in compactness from loose to very dense, are composed of quartz, the feldspars, large particles of kaolinite, calcite and occasionally homblende.¹

Below the approximately 600' thick Beaumont clay is the approximately 600' thick Lissie formation. The Lissie formation consists of thick beds of sand containing lentils of gravel and layers of clay, silt and some caliche.

After the Lissie formation, in descending order, lies the Goliad sand, the Lagarto clay, the Oakville sandstone and the Catahoula tuff.²

The strata strike northeastward and dip southeastward toward the Gulf of Mexico. The formations dip less than 20 feet per mile near the outcrop of each formation, but the dip gradually increases s that the older formations dip more than 70 feet per mile near the coast.

- 3. Geologic Activity Present in the Vicinity (§330.56(d)(3)):
- (A) The Coastal Plain in this region has a complex tectonic geology, several major features of which are: Gulf Coastal geosyncline, salt domes, major sea level fluctuations during the glacial stages, subsidence and faulting activities. Most of these faulting activities have ceased for millions of years.¹ A further review of the faulting and associated activities are discussed in Attachment 16, Location Restrictions.
- (B) Due to near flat topography of the site and the fact that no major streams or rivers are located adjacent to the site, potential for erosion due to surface waters is very low.
- (C) There have been no wetlands identified with this site. No areas that exhibit wetland conditions were noticed during a reconnaissance of the site.
- 4. Regional Aquifers² (§330.56(d)(4)):
- (A) Unconsolidated sand, gravel, and clay of the Quaternary age crop out over the greater part of Victoria County. Much of the groundwater used is withdrawn from wells tapping the Lissie formation, Beaumont clay, and Recent alluvium, all of the Quaternary age. Some water is withdrawn from wells tapping the Goliad sand which is exposed in northwestern Victoria County. Most of the water is withdrawn from the Lissie formation and the Goliad sand. The underlying Lagarto clay and Oakville sandstone also contain fresh-water aquifers in the area. The Goliad sand, Lagarto clay, and Oakville sandstone are of late Tertiary age. Both the Tertiary and Quaternary formations dip gently toward the coast and strike northeastsouthwest. Artesian ground-water conditions exist in the gently dipping, alternating sand and clay beds.
- (B) The regional aquifers near the landfill site are composed of unconsolidated layers of silt, sand, and gravel deposits separated by beds of clay. The heterogeneous character of the younger sediments makes correlation of the sands and clays difficult and unsure over distances of several miles. The deposits are often lenticular, the lenses pinch out, coalesce, or grade into each other within a short distance.

May 1, 1996 Revised January 13, 1997

Page 2

¹ Appendix A to Attachment 11, Soil Exploration Records, Permit Application for the City of Victoria Municipal Solid Waste Landfill, Resource Engineering Inc., 1982.

² Bulletin 6202, Ground-Water Resources of Victoria and Calhoun Counties, Texas, R.F. Shafer and O. C. Dale, USGS, 1962.

- (C) The majority of the land in the Gulf Coastal area has been built out to its present position by sediments being deposited in alternately continental, transitional and marine environments. The origin of all fresh groundwater in Victoria County is the precipitation that falls on Victoria County and surrounding counties. This water from precipitation enters the aquifers where they crop out and then percolating downward to the zone of saturation. Some of the water that reaches the water table is discharged by springs at places where streams cut the water table and some is lost by evapotranspiration from places where the water table is near the surface. The remainder moves downdip, replacing water discharged from wells and water that is lost to overlying horizons. Most of the precipitation is evaporated, used in plant growth, or runs off to the Gulf of Mexico.
- (D) The majority of the regional aquifers are under artesian conditions. Only the near surface aquifers are under water table conditions.
- (E) Regionally, the water-bearing zones of the aquifers are interconnected to a varying degree and regionally form a large artesian aquifer system (Muller and Price, 1979). Available information indicates that some of the shallow aquifers in Victoria may be interconnected.
- (F) A regional water-table contour map or potentiometric surface map for each of regional aquifers was not found in the research for this amendment. Included as Attachment 4B to this section is a portion of an Isopachous Map Containing Fresh of Slightly Saline Water, Victoria and Calhoun Counties from the Bulletin 6202, Groundwater Resources of Victoria and Calhoun Counties, USGS.
- (G) The coefficient of transmissibility in 8 wells in Victoria County ranged from 21,000 to 87,000 gallons per day per foot. The field coefficient of permeability ranged from 100 to 276 and averaged 192 gallons per day per square foot.
- (H) A large volume of fresh (Total Dissolved Solids (TDS) = 0-1,000 p.m.) ground water is stored in the aquifers that underlie Victoria County. The base of the fresh or slightly saline (TDS = 1,000-3,000 p.m.) water extends from 940 feet to more than 2,000 feet below sea level. Chemical analysis taken from sixty-two (62) water wells located in Victoria County had values of dissolved solids that ranged from 129 ppm to 1,930 ppm. While the majority of the samples collected in Victoria County had dissolved solids content greater than 500 ppm, only seven had a dissolved-solids content greater than 1,000 (Texas Board of Water Engineers, Bulletin 6202, Table 5, page 28, 1962)

Generally, the fresh or slightly saline water zone becomes thinner and of poorer quality toward the Gulf of Mexico.

(I) Recharge of the Beaumont clay and Lissie formations is through precipitation that falls directly on the formations. Because of the clay content, the formations do not exhibit characteristics that one would normally associate with a recharge zone. The majority of the precipitation is evaporated, used in plant growth, or lost in run-off to the Gulf of Mexico. A small part percolates through the soil, subsoil, and sediments to ultimately become groundwater.

The nearest recharge of the deeper Goliad sands are more than five miles from the site.

(J) The use of groundwater withdrawn from aquifers in the vicinity of the site is primarily for industrial, agricultural and municipal drinking uses. Dupont Corporation and Occidental Chemical Corporation are located approximately six (6) miles southwest of the site. The City of Bloomington, located approximately five (5) miles southeast of the site also uses

Geology Report

Prepared by: JFK GROUP, INC.

Page 3

May 1, 1996 Revised January 13, 1997

groundwater for drinking purposes. All wells located within a mile of the site are depicted in Part I, Attachment 2, of this application.

5. Subsurface Investigation (§330.56(d)(5)):

(A)(i) The initial subsurface investigation of this site was performed by Trinity Engineering Testing Corporation (Trinity), in 1980. A subsurface investigation was performed by Resource Engineering, Inc. (REI) in 1982. REI incorporated the Trinity investigation data with the additional data collected by REI into the report that was submitted as the geotechnical investigation for this site's original permit application in 1982. This information is presented in its entirety in Attachment 4-C (REI) and Attachment 4-D (Trinity).

Subsequent to the two (2) original site investigations, additional subsurface drilling was performed for the installation of groundwater monitoring wells, landfill gas monitoring probes, and piezometers for groundwater characterization. Although laboratory investigations of these additional borings were not performed, the boring logs are included for additional references. The boring logs' visual identification of the soils tends to confirm the data established by REI and Trinity in the early 1980's. These logs and/or reports are included in with the attachments to this section of the report:

- 1. Professional Service Industries, Inc., in 1992, for the installation of groundwater monitoring wells #5, 6, 7, 8, and 9 (Attachment 4-E);
- 2. Morris-Knudsen in 1993, for the installation of landfill gas monitoring probe installation (Attachment 4-F);
- 3. EMCON Engineering and Environmental Services, in 1995, for the installation of piezometers for groundwater flow characterization (Attachment 4-G).
- (A)(ii) As discussed in §330.56(d)(5)(A)(i) above, five (5) separate boring activities have occurred at this site since 1980. The most extensive review of the upper-most aquifer was performed by EMCON Engineering and Environmental Services, in 1995 and 1996. EMCON's investigation was performed to provide information for the characterization of the groundwater at the site. EMCON's field work included 11 soil borings and installation of 11 piezometers designed to groundwater monitoring well standards.

Data from the soil borings and information obtained previous to EMCON's 1995/1996 investigation indicate that the uppermost water-bearing zone is a sand that is present between 27 and 50 feet below ground surface (bgs). A higher, thinner sand zone found above approximately 23 feet bgs, was found to be a non-water-bearing sand. EMCON's investigation found the top of the uppermost water-bearing sand between 40 feet bgs and 55 feet bgs. The base of this uppermost water-bearing sand ranged from approximately 63 feet bgs to 72 feet bgs

Boring P-5, from the EMCON, Inc. investigation, was drilled to 100 feet below ground surface, 33.5 feet below the bottom of the uppermost water-bearing zone, to characterize the lower confining unit. Drilling was terminated approximately 100' bgs.

- (A)(iii) All field exploration methods are described in the applicable reports that follow this section.
- (A)(iv) Due to the fact that this is an existing landfill and this amendment does not include a request to lower the previously approved excavation depth, additional soil borings were not required

May 1, 1996 Revised January 13, 1997

Prepared by: JFK GROUP, INC.

for this amendment. The TNRCC's letter approving the existing borings is included as Attachment 4-H.

- (A)(v) All installation, abandonment, and plugging of the borings are described in the applicable reports that follow this section. Plugging reports for the abandonment of REI monitoring wells #1, #2, and #3 are included in Attachment 4-E. The 1982 #3 monitoring well was kept and renumbered monitoring well #2. The plugging report for the 1982 well that was completed in REI boring # B-2, has not been located. There has been no evidence of this well in any site investigation that has been conducted since 1986.
- (A)(vi) and (A)(vii) The TNRCC's letter approving the existing borings is included as Attachment 4-H.
- (A)(viii) Cross-sections prepared from the borings are included as Attachment 2-G through 2-K.
- (A)(ix) Data from the previously [prior to EMCON's 1995/1996 investigation] installed soil borings and wells indicate that the site is underlain by a surficial dark gray to tan-brown clay to an average depth of 23 feet bgs. This surficial clay layer contains varying amounts of interstitial sand. Beneath the clay is a tan fine-grained sand varying in thickness from 5 to 15 feet. Underlying this sand is another layer of tan to gray clay. Below this second clay, a second, thicker sand (uppermost water-bearing zone) is present between about 27 feet and 50 feet bgs. A third clay layer was encountered below this second sand at depths ranging from 60 to 63 feet bgs. Shallow groundwater was encountered within this second sand zone at depths between 36 to 38 feet bgs.³

The strata encountered during drilling [EMCON's 1995/1996 investigation] were very similar to that encountered during the previous investigations at the site. In general, a surficial clay was present to depths ranging from 12 to 26 feet [bgs]. Below the surface material was a light tan sand with some silt; this sand generally varied from about 7 to 13 feet thick and was not saturated. A sandy to silty clay of varying thickness was generally present below this upper sand. Below this sandy clay, a second sand zone (uppermost water-bearing zone) of varying thickness was encountered. The top of this sand ranged from about 40 to 55 feet bgs. At the P-7 location, the sandy clay separating the upper and lower sand was not present. A silty sand was encountered at 23.5 feet which was underlain at 31 feet by the water-bearing sand. Below this water-bearing sand in all the borings was a sandy to silty clay or clayey sand. All borings, except P-5, terminated in this lower clayey zone. P-5 was drilled to a total depth of 100 feet (bgs) to determine if deeper sands were present.⁴

6. Geotechnical Report (§330.56(d)(5)(B)):

The Geotechnical Report was performed by Resources Engineering Incorporated (REI) and Trinity Engineering Testing Corporation is included as Attachments 4-C and 4-D. (NOTE: Although Attachments 4-C and 4-D appear to be appendices to a larger geotechnical report, they are presented in their entirety.)

Piezometer Installation Report, City of Victoria Landfill, Victoria County, Texas MSW Permit No. 1522, EMCON Engineering Environmental Services, May 1996, page 4.

Geology Report

4

May 1, 1996 Revised January 13, 1997

Page 5

Prepared by: JFK GROUP, INC.

³ Piezometer Installation Report, City of Victoria Landfill, Victoria County, Texas MSW Permit No. 1522, EMCON Engineering and Environmental Services, May 1996, page 2.

7. Groundwater Investigation Report (§330.56(d)(5)(C)):

(i) The approximate 30' deep soil borings drilled by Trinity in 1980, did not find evidence of groundwater. Soil borings performed by REI in 1982 did not record the depth at which groundwater was first encountered. Additional wells were apparently installed by REI in 1983. These wells were also numbered 1 through 3. Data on file with the City of Victoria and the TNRCC is limited. After correspondence from the Texas Department of Health and the TNRCC (formerly Texas Water Commission), the REI wells were plugged.

Five (5) new groundwater monitoring wells were installed by Professional Services Industries, Inc. (PSI), in 1992. Groundwater levels in the REI borings and the PSI groundwater monitoring wells installed in 1992 were conflicting. Therefore, groundwater level data from the 1982 and 1983 borings and wells are not tabulated in Table 1, below. The depth at which groundwater was encountered in PSI's borings for groundwater monitoring wells #5 through #9 are presented in Table 1.

Eleven (11) piezometers were installed by EMCON Engineering and Environmental Services in 1995/1996 to complete the characterization of the groundwater flow beneath the site. The depths at which groundwater was encountered in EMCON's borings for piezometers #1 through #11 were not recorded as the borings were drilled using wet rotary techniques.

(From	Initial De Attachmer	Table 1 pth of Groundwater nt 4E, PSI Record of 3	(M.S.L.) Subsurface Exploration	n)
We	#	Surface Elevation	Elevation of GW	
MM	/-5	64.3	26.3	
MM	/-6	64.8	26.8	
MM	/-7	63.0	26.0	

For Permitting Purposes Only

Water levels after equilibrium of groundwater monitoring wells #5 through #9 and the eleven (11) piezometers can be found in Attachment 5B.

25.9 27 4

(ii) Water levels from groundwater monitoring wells #5, #6, #7, #8, #9, and piezometer #1 through #11 can be found in Attachment 5B.

63.4

63.4

- (iii) The groundwater monitoring system previously consisted of monitoring wells #5 through #9. The TNRCC, in a letter dated December 18, 1996, approved the conversion of the sites eleven (11) existing piezometers to groundwater monitoring wells. The converted eleven (11) piezometers are the new Subtitle D groundwater monitoring system and re-numbered as groundwater monitoring wells #10 through #20. Groundwater monitoring wells #5 through #9 will be plugged and abandoned in 1997. Attachment 5, Groundwater Characterization Report, details the groundwater characterization and contains the certification by a qualified groundwater scientist.
- (iv) The most likely pathway for pollutant migration in the event that the synthetic and/or clay liner system is penetrated, is through the first sand layer (dry), through the in-situ

Geology Report

May 1, 1996 Revised January 13, 1997

MW-8

MW-9

Prepared by: JFK GROUP, INC.

Page 6

clay below the first (dry) sand, into the second sand layer (uppermost water-bearing unit), where the contamination would flow down-gradient to the point of compliance located at the western boundary of the site. The point of compliance is depicted graphically in Attachment 5H.

The continued construction of the landfill is not expected to change the most likely pathway for pollutant migration because:

- 1. After 14 years of landfill construction, the piezometric maps shown in Attachment 5 do not appear to indicate any influences from the landfill. The protective barrier prior to 1994 consisted of in-situ and re-compacted clay liners.
- 2. The use of composite liners and leachate collection and removal systems beginning in 1994 provides additional protection to the groundwater without changing the potential pathway of pollutant migration.

8. Description of Existing and Proposed Groundwater Monitoring System (§330.56(d)(6)):

Existing Groundwater Monitoring System

The previous groundwater monitoring system consisted of five (5) wells installed by Professional Services, Inc. (PSI), in 1992. The groundwater well installation report prepared by PSI is presented in Attachment 4-E. During the characterization of the groundwater for the site's Subtitle D submittal, it was determined that these five (5) wells were installed parallel to the groundwater gradient. Eleven (11) piezometers were installed, to groundwater well specifications, to fully characterize the groundwater flow. The 11 piezometers were installed by EMCON Engineering and Environmental Services (EMCON) in 1995 and 1996. The piezometer installation report by EMCON is in Attachment 4-G. A Class I Modification to convert these eleven (11) piezometers to groundwater monitoring wells was approved in a letter from the TNRCC dated December 18, 1996. A copy of the TNRCC approval is included in Attachment 5G. The converted eleven (11) piezometers are the new Subtitle D groundwater monitoring system and re-numbered as groundwater monitoring wells #10 through #20. Attachment 5G also includes certification that the groundwater protection system is in compliance with 40 CFR 248 Part E and 30 TAC 330 §231 through §235 . Groundwater monitoring wells #5 through #9 will be plugged and abandoned in 1997.

Drawings of groundwater monitoring wells #10 through #20 can be found in Attachment 5-E, Appendix E.

Table 2, on page 8, lists total depth, depth to ground-water, ground surface elevation, elevation of the top of well casing, depth to top and base of the screen, and depth to the top and base of the filter pack of each well.

Vobs\549b\georpt.at4

Geology Report May 1, 1996 Revised January 13, 1997

Page 8 Prepared by: JFK GROUP, INC.

Geology Report May 1, 1996 Revised January 13, 1997

-13-4 For Permitting Purposes Only

61815 SQISTER

ALCONS.

NE OF

																		V
o (bgs)	Bottom of filter pack	65.0	65.0	65.0	65.0	65.0	65.0	75.0	64.0	68.5	66.5	72.0	64.0	63.5	65.0	74.0	73.0	
Depth t	Top of filter pack	28.0	28.0	28.0	28.0	28.0	50.0	55.0	49.0	54.0	52.0	51.0	35.0	53.5	42.5	44.0	49.0	
(bgs) (Base of screen	65.0	65.0	65.0	65.0	65.0	64.0	69.5	63.0	67.0	64.5	64.0	61.0	62.5	56.5	66.0	62.0	
Depth to	Top of screen	30.0	30.0	30.0	30.0	30.0	54.0	59.5	53.0	57.0	54.5	54.0	51.0	57.5	46.5	56.0	52.0	
	Elevation Top of Casing (msl)	67.27	68.31	66.30	66.81	66.89	69.08	68.32	67.51	66.89	66.56	65.93	65.69	66.04	66.22	66.76	67.45	
	Ground Surface Elevation (msl)	64.3	64.8	63.0	63.4	63.4	66.7	65.7	64.7	64.2	63.9	63.5	63.0	63.6	63.8	64.0	64.6	
Depth to	Groundwater (below TOC)	41.2	41.43	38.88	39.98	40.5	43.6	42.42	40.1	38.12	37.48	36.65	36.79	38.56	39.81	41.04	41.84	
Total	Depth (bgs)	65.0	65.0	65.0	65.0	65.0	65.0	75.0	71.0	68.5	66.5	72.0	64.0	63.5	65.0	74.0	73.0	
	Nel I #	5	9	7	8	6	10	1	12	13	14	15	16	17	18	19	20	

Monitoring Well Construction Data Table 2

J Victoria Landfill, TNRCC Permit No. MSW-1522

ت

Permit Application 1522B

Attachment 5-54

Revision 0, March 28, 2022

Vjobs\549b\georpt.at4

CITY OF VICTORIA LANDFILL VICTORIA COUNTY, TEXAS TCEQ PERMIT NO. MSW-1522A

SITE DEVELOPMENT PLAN

ATTACHMENT 2 FILL CROSS-SECTIONS

Prepared for

City of Victoria

TCEQ Approved August 29, 1997 Revised March 2006 Revised January 2007 Revised March 2009

January 2007 Revision Prepared by

Weaver Boos Consultants, LLC-Southwest

6420 Southwest Boulevard, Suite 206 Fort Worth, Texas 76109 817-735-9770

March 2009 Revision Prepared by

SCS Engineers 12651 Briar Forest Dr., Suite 205 Houston, Texas 77077 (281)-397-6747

1

Permit Application 1522B

		and the second se	-
	Β		5
(IMUM TOP OF WASTE ELEVATION 140.5' MSL	DESCRIPTION	006 REVIED FINUL CONTOUR TO RELACK EDACH 007 REVIED FINUL CONTOUR FLAUL 10 FT HECHT INCREASE 007 REVIED SAVLE LOCATIONS, 10 FT HECHT INCREASE	009 REPAR SMAL LUCKIONS, BASE GRADES, REDUCED
GAS VENT ARE PROPOSED AT THE SITE	DAT	12/10 V	03/20
HIGHEST STATIC LEVEL	2		
- PROPOSED TOP OF FINAL COVER - PROPOSED TOP OF WASTE INDICATES REVISION	CROSS-SECTION 1-1		
DRAINAGE SWALE	DRAWING TITL	PROJECT TITL	Ζ
	CLIENT REPUBLIC WASTE SERVICES	CITY OF VICTORIA LANDFILL	VICTORIA, TEXAS 77905
E: HIS DRAWING REPRODUCED FROM SDP ATTACHMENT B, PREPARED BY JFK GROUP, INC., MAY 1, 1996. NLY THE FINAL COVER HAS CHANGED FOR THE O-FOOT HEIGHT INCREASE.	SCS ENGINEERS STEARNS, CONRAD AND SCHMIDT	CONSULTING ENGINEERS 12551 BRIAR FOREST DA, SUITE 250, HOUSTON, TX 77077 PH (281) 397-6747 FAX HO. (281) 239-7878	สณ. หอ. 162,085.41 Duw. ธท. ปู./ DJM วรเช่า: JR Carc ธา. DJM APP. 51,314
THIS ATTACHMENT WAS INCLUDED IN A PERMIT	CADD F 29-07025	TLE:	
MODIFICATION, AS PREPARED BY WEAVER BOOS CONSULTANTS, AND SIGNED AND SEALED BY JEFFREY P. YOUNG (TEXAS P.E. 79809) ON JANUARY 15, 2007, SCS ENCINEEDE IS CENTERING	SCALE: AS	S SHOW	N
BY ENGINEERING SEAL, ONLY THE REVISIONS SHOWN DATED MARCH 2009. FOR PERMITTING PURPOSES ONLY		2B	

UM TOP OF WASTE ELEVATION 140.5' MSL UM FILL ELEVATION 144' MSL AS VENT ARE PROPOSED AT THE SITE INITIAL LEVEL	REV DATE DESCRIPTION BY	NJ7006 RUNSED INVL CHITOR TO RELIAC RULES 10/7007 RUNEED FOUL CHITORIA RULE IN THE RULE IN THEORE NJ7007 RULES FOUL CHITORIA, 10 THEORE RULES AJ72006 RULES FOULDER, 19 THEORE RULES ARTER FOURIER
UM TOP OF WASTE ELEVATION 140.5' MSL UM FILL ELEVATION 144' MSL AS VENT ARE PROPOSED AT THE SITE INITIAL LEVEL	REV DATE DESCRIPTION	NJ7000 RUSSUI RNU, CANTUNI TU RILLOK BUILO NJ7000 RUSSUI RUL CANTUNI RUL ID FLUCEN INSULUE NJ7000 RULE LUCHUNG, 10 FLUCEN INSULUE NJ7000 RULE RULE LUCHUNG, ULSE GRUDES, RULUED NJ71000 RULE RULE LUCHUNG, ULSE GRUDES, RULUED
um Top OF Waste Elevation 140.5' MSL Um Fill Elevation 144' MSL AS VENT ARE PROPOSED AT THE SITE INITIAL LEVEL	REV DATE	1002/10
UM TOP OF WASTE ELEVATION 140.5' MSL UM FILL ELEVATION 144' MSL AS VENT ARE PROPOSED AT THE SITE INITIAL LEVEL	REV [
UM TOP OF WASTE ELEVATION 140.5' MSL UM FILL ELEVATION 144' MSL AS VENT ARE PROPOSED AT THE SITE INITIAL LEVEL	C II	নৰৰৰ<
HUGHEST STATIC LEVEL LOCATION OF SCREENS PROPOSED TOP OF FINAL COVER PROPOSED TOP OF WASTE	AWING TITLE CROSS-SECTION 2-2	
	DRJ D	РКС
DRAINAGE SWALE	CLIENT REPUBLIC WASTE SERVICE	CITY OF VICTORIA LANDFIL 18545 F.M. 1686 VICTORIA, TEXAS 77905
TE: THIS DRAWING REPRODUCED FROM SDP ATTACHMENT 2C, PREPARED BY JFK GROUP, INC., MAY 1, 1996. NILY THE FINAL COVER HAS CHANGED FOR THE 10 OOT HEIGHT INCREASE.	TEALS SCS ENGINEERS	Model Model <th< th=""></th<>

	1	
	à	Ę
TOP OF WASTE ELEVATION 140.5' MSL FILL ELEVATION 144' MSL VENT ARE PROPOSED AT THE SITE	REV DATE DESCRIPTION	
IGHEST STATIC LEVEL		
CATION OF SCREENS OPOSED TOP OF FINAL COVER	SECTION 3-3	ODIFICATION
OFUSED TOP OF WASTE	ġ	
NCATES REVISION		
ainage swale	DRAWING TITLE	
	CLENT DEDITION MACTE SEDVICE	CITY OF VICTORIA LANDFIL VICTORIA, TEXAS 77905
AWING REPRODUCED FROM SDP ATTACHMENT PARED BY JFK GROUP, INC., MAY 1, 1995.	SCS ENGINEERS	DIRATING CONTADA DISCHMIDT DIRATING CONTADA DISCHMIDT SATRUM FOREST DR, SUITE 280, HOUSTON, TX 7707 E (EH) 107-077 FAX NO. (201) 2025-7079 E (EH) 107-074 FAX NO. (201) 2025-7079 C (201) 2025-2019 C (201) 2027 C (201) C (201) 2020 C (201) 2027 C (201) 2027 C (201) C (201) 2027 C
THIS ATTACHMENT WAS INCLUDED IN A PERMIT MODIFICATION, AS PREPARED BY WEAVER BOOS CONSULTANTS, AND SIGNED AND SEALED BY JEFFREY P, YOUNG (TEXAS P.E. 79809) ON JANUARY 15, 2007. SCS ENGINEERS IS CERTIFYING, BY ENGINEERING SEAL, ONLY THE REVISIONS SHOWN DATED MARCH 2009. FOR PERMITTING PURPOSES ONLY	CADD 20-0100 DATE: SCALE	20032 12 12 12 12 12 12 12 12 12 12 12 12 12

THITTAL LEVEL DI MSL

VHIDEST STATIC LEVEL IN HSL

= Groundvater nenitoring vells to be plugged and abandened

** GROWEVATER KONTERINE VELLS PREVIOUSLY PLOGEES AND ADAYDRED PROPOSED TOP OF FINAL COVER

PROPOSED TOP OF WASTE INDICATES REVISION

DRAINAGE SWALE

Revision 0, March 28, 2022

Revision 0, March 28, 2022

Permit Application 1522B

Revision 0, March 28, 2022

GRAPHIC SCALE

20' 200'

0 0

15

60' VERT. 600' HORZ.

Permit Application 1522B

Attachment 5-64

40' 400'

	1				-	-
	à			Ę		
-	DESCRIPTION	CEVERAL REVISION	add hote	REVISE BASE CRADES		
60	DATE	95/02/1	13/21/	6002/9	T	
<u></u>	REV	u ₩	₽ 10	ଅ <	1<	
50						
40	7.7 NC			CATION		
- <u>30</u>	SECTIC			MODIFI		
20 Se		15	4	FRMIT		
W 10	DRAWING TH	PROJECT TIT		۵		
<u> </u>	Ľ					
<u>-10</u>			A LAND	1686	S 77905	
<u>–20</u>	TOVA	I OLU		1545 F.M.	RIA, TEXA	
				18	VICTO	
NG LOG WIDTHS NOT TO SCALE.	SCS ENGINEERS	S I EAHNS, CUNHAD AND SCHMIDT CONSULTING ENGINEERS	12651 BRIAR FOREST DR, SUITE 250, HOUSTON, TX 77077		16208541 JLJ 44 MM	JR DJM JRM
THIS ATTACHMENT WAS INCLUDED IN A PERMIT MODIFICATION, AS PREPARED BY JFK GROUP, AND SIGNED AND SEALED BY J. FLETCHER KELLY (TEXAS P.E. 61815) ON JANUARY 13, 1997. SCS ENGINEERS IS CERTIFYING, BY ENGINEERING SEAL, ONLY THE REVISIONS SHOWN DATED MARCH 2009.	CADD 2)-OROSE DATE: SCALE ATTAC		20 5H0	-7 08 DWN		
FOR PERMITTING PURPOSES ONLY						

APPENDIX 5B – REGIONAL GEOLOGY INFORMATION

Permit Application 1522B

125 Attachment 5-66

U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY

BLOOMINGTON QUADRANGLE TEXAS - VICTORIA COUNTY 7.5-MINUTE SERIES

NSN. 7643016395136 NGA REF NO. US GS X 24 K 4 4 4 4

Revision 0, March 28, 2022

State Route

Attachment 5-67

North American Datum of 1983 (NAD83) World Geodetic System of 1984 (WGS84). Projection and 1 000-meter grid:Universal Transverse Mercator, Zone 14R This map is not a legal document. Boundaries may be generalized for this map scale. Private lands within government reservations may not be shown. Obtain permission before entering private lands.

Imagery.... Roads..... Names..... Hydrography..... Contours.... Boundaries.... Wetlands...

Permit Application 1522B

2018 Long-term National Seismic Hazard Map

(Public domain.)

Detailed Description

Earthquake hazard map showing peak ground accelerations having a 2 percent probability of being exceeded in 50 years, for a firm rock site. The map is based on the most recent USGS models for the conterminous U.S. (2018), Hawaii (1998), and Alaska (2007). The models are based on seismicity and fault-slip rates, and take into account the frequency of earthquakes of various magnitudes. Locally, the hazard may be greater than shown, because site geology may amplify ground motions.

Details

Image Dimensions: 2250 x 1500

APPENDIX 5C – BORING LOGS

SOIL CLASSIFICATION CHART

м		ONS	SYM	BOLS	TYPICAL		
, m		0145	GRAPH	LETTER	DESCRIPTIONS		
	GRAVEL AND	CLEAN GRAVELS		GW	WELL-GRADED GRAVELS, GRAVEL - SAND MIXTURES, LITTLE OR NO FINES		
	GRAVELLY SOILS	(LITTLE OR NO FINES)		GP	POORLY-GRADED GRAVELS, GRAVEL - SAND MIXTURES, LITTLE OR NO FINES		
COARSE GRAINED SOILS	MORE THAN 50% OF COARSE	GRAVELS WITH FINES		GM	SILTY GRAVELS, GRAVEL - SAND - SILT MIXTURES		
	RETAINED ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		GC	CLAYEY GRAVELS, GRAVEL - SAND - CLAY MIXTURES		
MORE THAN 50% OF MATERIAL IS	SAND AND	CLEAN SANDS		sw	WELL-GRADED SANDS, GRAVELLY SANDS, LITTLE OR NO FINES		
LARGER THAN NO. 200 SIEVE SIZE	SANDY SOILS	(LITTLE OR NO FINES)		SP	POORLY-GRADED SANDS, GRAVELLY SAND, LITTLE OR NO FINES		
	MORE THAN 50% OF COARSE	SANDS WITH FINES		SM	SILTY SANDS, SAND - SILT MIXTURES		
	PASSING ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		SC	CLAYEY SANDS, SAND - CLAY MIXTURES		
				ML	INORGANIC SILTS AND VERY FINE SANDS, ROCK FLOUR, SILTY OR CLAYEY FINE SANDS OR CLAYEY SILTS WITH SLIGHT PLASTICITY		
FINE GRAINED SOILS	SILTS AND CLAYS	LIQUID LIMIT LESS THAN 50		CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS		
00120				OL	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY		
MORE THAN 50% OF MATERIAL IS SMALLER THAN NO. 200 SIEVE				МН	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS FINE SAND OR SILTY SOILS		
SIZE	SILTS AND CLAYS	LIQUID LIMIT GREATER THAN 50		СН	INORGANIC CLAYS OF HIGH PLASTICITY		
				ОН	ORGANIC CLAYS OF MEDIUM TO HIGH PLASTICITY, ORGANIC SILTS		
н	GHLY ORGANIC S	SOILS		PT	PEAT, HUMUS, SWAMP SOILS WITH HIGH ORGANIC CONTENTS		

NOTE: DUAL SYMBOLS ARE USED TO INDICATE BORDERLINE SOIL CLASSIFICATIONS

Unified Soil Classification System

RELATIVE PLASTICITY										
NON PLASTIC	CANNOT ROLL INTO BALL									
TRACE PLASTICITY	BARELY ROLL INTO BALL									
MEDIUM PLASTIC	CAN BE ROLLED INTO BALL									
HIGHLY PLASTIC	NO RUPTURE BY KNEADING									

F	RELATIVE MOISTURE	DENSITY	SPT-N
		VERY LOOSE	0-4
DRY	POWDERY	LOOSE	5-10
DAMP	BELOW PLASTIC LIMIT	MEDIUM	11-30
MOIST	PL TO LL RANGE	DENSE	31-50
WET	ABOVE LIQUID LIMIT	VERY DENSE	>50

RELATIVE PARTICLE SIZE								
BOULDER	LARGER THAN 12"							
COBBLE	3" TO 12"							
GRAVEL COARSE	3/4" TO 3"							
FINE	4.76" TO 3/4"							
SAND COARSE	2MM TO 4.76MM							
MEDIUM	0.42MM TO 2MM							
FINE	0.074MM TO 0.42MM							
SILTS AND CLAY	SMALLER THAN 0.074MM							

RELATIVE COMPOSITION									
TRACE	0-10%								
SOME	11-35%								
AND/WITH	36-50%								

CONSIST	ENCY OF FIN	E-GRAINED	CONSISTENCY OF FINE-GRAINED SOILS										
	PP (q _u , tsf)	TV (c, tsf)	SPT-N										
VERY SOFT	< 1/4	< 1/8	<2										
SOFT	1/4-1/2	1/8-1/4	2-4										
MEDIUM	1/2-1	1/4-1/2	4-8										
STIFF	1-2	1/2-1	8-16										
VERY STIFF	2-4	1-2	16-32										
HARD	> 4	> 2	>32										

N-VALUE (BLOW COUNT) IS THE STANDARD PENETRATION RESISTANCE BASED ON THE TOTAL NUMBER OF BLOWS, USING A 140-LB HAMMER WITH 30-INCH FREE FALL, REQUIRED TO DRIVE A SPLIT-SPOON THE LAST TWO OF THREE 6-INCH DRIVE INCREMENTS. (EXAMPLE: 4/7/9, N = 7+ 9 = 16)

Drilling Log

	Project Name Project No. Boring Number											8-01				
	Ground El	levation		Location	toria TV		l	Latitude	13442	437.81	Page			F 5		
	Air Monito	ring Equi	pment					Longitude	20430	17.21	Total	Footage	1 01	1.5		
	Drilling	Туре	Hole Size	Overburden Foo	otage Be	drock Foota	ge	No. Of Sar	nples	No. Core	Boxes	Dep	67 Depth to Water		Date Measure	ed
	Rotary	Wash	3.75"	67		0	-	3								
	Drilling Co	ompany	Braun Intertec		<u>!</u>			Drillers (s)	C. C	rews				•		
	Drilling Rig	g Ardo	co Model K 4x4					Type of Sampler		Split Sp	oon, S	helby 1	Гube			
	Date 1-	-29-19		то 1-29-19				Field Obse	rver (s)	M. Pih	I					
							Blo	w	Run/	Sample	PI	D (ppi	m)		Remarks/	
	Depth			Description		Class	Cou	nt Recov.	Time	Desig.	ΒZ	BH	S		Water Levels	
							NA	A / 3						san eve oth	npling performe ry 5 feet unles erwise noted	≥d s
	4	CLA dam calca	Y, very dark grayis o to moist, high pla areous nodules	n brown (10YR sticity, trace	3/2),	Сн	2/ 3/ 3	1.17/ 2		EB-01 3 - 5				Sar for <i>i</i>	nple collected ASTM D422	
LIAMS.GDT 11/7/21							NA	× /3								
'Ictoria Landfill.gpj wil	8 	CLA dam calca	Y with sand and sil o to moist, medium areous nodules	t, gray (10YR 6 plasticity, trace	/1), e	<u>c</u> l	2/ 3/ 5	1.5/ 2		8 - 10			ATE OF	TEX		
VIRONMENTAL LOG BORING LOGS 107608 V.		CLA (10Y stain	Y with fine grained R 6/1), damp to mo ing, trace mangand	sand and silt, g bist, stiff, mottle	gray d iron eous	<u>c</u> L	NA	/ 3					VID SCOTT GEOLE VID SCOTT GEOLE VIA CENT STAL	T BARK		
Π	<u>14</u>	nodu ermit App	lies lication 1522B			Attachn	nent :	5-72	<u> </u>	1	R	evision	0, Marc		NS 2020NNEL	 .L.

										EE	8-01
Project	Name City of Victoria Landfill Expansion						Page	;		2 of	5
Project	Number 107608						Date			1-29	9-19
Depth	Description	Class	Blow Count	Recov.	Run/ Time	Sample. Desig.	Р вz	ID (р вн	pm) s	Remarks/ Water Levels
15-		CL	10	1.66/ 2		13 - 15			·		-
16-											-
17-			NA	/ 3							-
18-	SAND trace clay, light brownish gray (10YR 6/2), damp to moist, loose, very fine grained	- <u>sc</u> -									
19-			4/ 5/ 6	1/ 2		18 - 20					
20-											
22-			NA	/ 3							
23-											- - - - - - -
24-			7/ 11/ 17	1/ 2		EB-01 23 - 25					Sample collected for ASTM D422
25-											
26-			NA	/ 3							
28-	SAND trace interbedded clay. light gray (10YR	- <u></u>									
29-	7/2), damp to moist, fine grained, calcareous		9/ 11/ 15	0.66/ 2		28 - 30					
			NA								

		Borin	Boring Number EB-01							
Project N	Name City of Victoria Landfill Expansion						Page	;	3 of	5
Project N	Number 107608						Date		1-29	-19
Depth	Description	Class	Blow Count	Recov.	Run/ Time	Sample. Desig.	P BZ	ID (ppr вн	m) s	. Remarks/ Water Levels
32			NA	/ 3					•	
33-	SAND trace silt, light brownish gray (10YR 6/2), damp to moist, loose, very fine grained	SM								
34			8/ 8/ 10	1/ 2		33 - 35				
36-										
37-			NA	/ 3						
38-			8/ 10/	0.66/ 2		38 - 40				
40-										
41			NA	/ 3						- - - - - -
M HZ HANDELIT. CBJ										
77608 VICTORIA			8/ 11/ 13	0.66/ 2		43 - 45				
45 45 46										
SONMENTALLOG			NA	/ 3						
48 -	Permit Application 1522B	Attachr	ment 5-7	4			F	Revision	0, Marc	

		Borin	Boring Number EB-01							
Project Na	ame City of Victoria Landfill Expansion						Page	•	4 of	5
Project N	umber 107608	1			1		Date		1-29	9-19
Depth	Description	Class	Blow Count	Recov.	Run/ Time	Sample . Desig.	P _{BZ}	ID (pp вн	om) s	Remarks/ Water Levels
49-	SAND with interbedded clay, light brownish gray (10YR 6/2), damp to moist, fine grained, calcareous, trace manganese	SC	9/ 9/ 16	1.5/ 2		EB-01 48 - 50				Sample collected for ASTM D4318
51			NA	/ 3						
53	SAND trace clay, pale brown (10YR 6/3), damp to moist, fine to medium grained	SC	13/ 22/ 26	1/2		53 - 55				
56			NA	/ 3						
	SAND trace clay, pale brown (10YR 6/3), damp to moist, fine to medium grained, trace subrounded gravel, iron staining	- <u>-</u> -	-/ -/ -	1/2		58 - 60				58-60 Shelby Tube
			NA	/ 3						
	SAND trace clay, pale brown (10YR 6/3), damp to moist, very fine to fine grained, trace iron staining	-sc	18/ 21/ 23	1/2		63 - 65				

										Boring Number EB-01			
Project N	Name City of Victoria Landfill Expansion						Page 5 of 5						
Project N	Number 107608						Date		1-29	9-19			
Depth	Description	Class	Blow Count	Recov.	Run/ Time	Sample Desig.	Р вz	ID (pp вн	m) s	Remarks/ Water Levels			
-	SAND trace clay, pale brown (10YR 6/3), damp to moist, very fine to fine grained, trace iron staining	SC	5/					ļ	Į				
66			5/ 9	1/ 2		65 - 67							
67—	Bottom of Boring @ 67'									 Piezometer			
68-										installed			
69-										- 			
70-										- - - - -			
71-													
72										- - -			
73										- - - - -			
74													
- - - - - 76													
- 78													
S 79													
- 08 BOR													
- 18													
82 -	Permit Application 1522B	Attachr	ment 5-7	6			F	Revision	0, Marc				

Drilling Log

	Project Na Citv	ame v of Victo	oria Landfill Expa	ansio	Project No. 107608								Boring	Number	r FB	8-02	>	
	Ground El	levation			Location	T \/			Latitud	е	13441	678.37	Page			<u> </u>		
	Air Monito	9 π. NA	pment		victoria,	IX			Longit	ude	20438	49.85	Total F	ootage	1 01	6		
	Drilling	Turne	4-Gas	s	window Footowa	Dedu	al Fasta		Na			No. Com		Dant	88		Data Magai	
	Drilling	1ype	Hole Size	Over		Beard		age	NO. C	Ji Sar	npies	NO. COR	e Boxes	Dept	in to vva	ater	Date Measu	irea
	Rolary	wasn	3.75		88		0						•					
	Drilling Co	ompany	Braun Intertec						Drille Type	rs (s) of	C. Ci	rews						
	Drilling Rig	g Ardo	co Model K 4x4						Sam	oler		Split Sp	oon					
	Date 1-	-22-19		То	1-22-19			<u> </u>	Field	Obse	rver (s)	M. Pih						
								Blo	w		Run/	Sample	PIE) (ppn	n)		Remarks/	
	Depth		V como oilt vonud	Desc	ription	<u>, </u>	Class	Cou	int Re	ecov.	Time	Desig.	BZ	вн	S		Water Levels	
		damp	Y some slit, very a p to moist, soft, hig	ark bi jh pla	rown (10YR 2/2 Isticity, trace roo), ots	Сн	3/ 4/ 4		2/ 2		0 - 2				Sp unl not	oon sampling less otherwise ted	
	3	trace	e calcareous nodul	es				4/ 5/ 7		1/2		2 - 4						
		CLA (10Y calca	Y some sand and a R 2/2), damp to m areous nodules, ro	silt, ve oist, s ots	ery dark brown stiff, some		ĊL.	5/ 8/ 9	, ,	1/ 2		4 - 6						
LIAMS.GDT 11/7/21		CLA` damı calca	Y with fine sand, p o to moist, stiff, tra areous and manga	ale br ce pla nese	rown (10YR 6/3 asticity, trace nodules), — —	- CL	5/ 5/ 6	, 1.	08/ 2		6 - 8						
Toria Landfill.gpj wil	8	some manç	e calcareous angul ganese nodules	lar pe	bbles and			6/ 8/ 9		1/2		8 - 10		*	STATE		5.2.1.5 H 1	
RING LOGS 107608 VIC		CLA (10Y plast pebb	Y with fine sand ar R 7/1), damp to m icity, trace calcare les	oist, v	ce silt, light gray very stiff, trace lodules and	/	CL.	5/ 7/ 7	0.	75/ 2		10 - 12		ANOTE:	OYLO GEO OYLO SONAL	PLOG	ARKER Y	
ENVIRONMENTAL LOG BOI		with	mottled iron stainir	ng				5/ 7/ 9	0.1	83/ 2		12 - 14						-
-	Pe	ermit App	lication 1522B				Attachr	nent	5-77				Re	vision (), Marc			LL.

							Borin	ig Numbe	["] EB	6-02		
Project Na	ame City of Victoria Landfill Expansion						Page	•	2 of	6		
Project N	umber 107608				-		Date		1-22	2-19		
Depth	Description	Class	Blow Count	Recov.	Run/ Time	Sample. Desig.	P BZ	ID (ppr вн	n) s	. Remarks/ Water Levels		
15	CLAY some fine sand and silt, light gray (10YR 7/1), damp to moist, very stiff, with mottled staining, calcareous	CL	9/ 13/ 12	0.75/2		14 - 16		ļ	•			
	SAND trace interbedded clay, light gray (10YR 7/2), damp to moist, fine grained	-sc-	13/ 13/ 16	0.66/ 2		16 - 18						
19			17/ 24/ 30	1/ 2		18 - 20						
21			9/ 18/ 20	1.17/ 2		20 - 22						
23-			21/ 24/ 30	1.5/ 2		22 - 24						
			28/ 37/ 35	1.33/ 2		24 - 26				- - - - - - - - - - - - -		
	SAND with interbedded clay, very pale brown (10YR 7/3), damp to moist, fine to medium grained, trace calcareous, rounded pebbles	SC	12/ 18/ 20	0.66/ 2		26 - 28						
28	SAND with clay and silt, pale red (2.5YR 7/2), damp to moist, loose, fine to medium grained, increasing grain size with depth	- sc	16/ 24/ 33	1.5/ 2		28 - 30						
30 SAND, light brownish gray (10YR 6/2), damp 10 10 10												
Pe	ermit Application 1522B	Attach	ment 5-7	78			F	Revision	0, Marci	BURNS MCDONNELL.		

							Borin	ig Num	ber	EB	5-02	
Project N	Name City of Victoria Landfill Expansion						Page	•		3 of	6	
Project N	Number 107608						Date			1-22	2-19	
Depth	Description	Class	Blow Count	Recov.	Run/ Time	Sample, Desig.	Р вz	ID (р вн	pm)	S	Remarks/ Water Levels	
32-	SAND, light brownish gray (10YR 6/2), damp to moist, fine grained, loose	SP	24/ 27	0.42/2		30 - 32						-
33-			9/ 14/ 20	0.33/ 2		32 - 34						-
34—	SAND trace interbedded silty clay, light brownish gray (10YR 6/2), damp to moist, fine	sc										
35—	grained, loose, trace calcareous pebbles		4/ 9/ 12	0.42/ 2		EB-02 34 - 36					Sample collected for ASTM D422	
36-			15/	4/0								
37-			15/ 19	1/ 2		36 - 38						-
39—	6/4), damp to moist, fine to medium grained, trace calcareous gravel	SC	9/ 9/ 12	0.83/ 2		38 - 40						-
-04 	SAND, light brownish gray (10YR 6/2), damp to moist, fine grained, loose	SP	12/									-
41- 41- 42-			21/ 30	1.5/ 2		40 - 42						-
	trace calcareous nodules		15/ 20/ 22	0.83/ 2		42 - 44						-
608 VICTORIA I	SAND, light yellowish brown (10YR 6/4), damp to moist, fine grained, loose, some iron	SP										
45- 45-			12/ 17/ 26	0.66/ 2		44 - 46						-
46-	SAND, light gray (10YR 7/2), damp to moist, fine grained, loose, trace iron staining	SP	10/	0.5/2								-
ENVIRONME 48			20	0.0/2		46 - 48						-

							Borin	ig Numbe	er EE	3-02
Project Na	ame City of Victoria Landfill Expansion						Page	;	4 of	6
Project Nu	umber 107608						Date		1-22	2-19
			Blow		Run/	Sample	Ρ	'ID (ppi	n)	Remarks/
Depth	Description	Class	Count	Recov.	Time	Desig.	ΒZ	BH	S	Water Levels
	SAND, light gray (10YR 7/2), damp to moist,	SP						•		-
	nne granned, 10050, trace non stanning		11/							-
49-			17/	0.66/2		48 - 50				
-			23							
50-										
	SAND, light yellowish brown (10YR 6/4), damp to moist, fine grained, some iron	SP								
	staining		16/							
51-			23/ 29	0.33/2		50 - 52				
52-										
	(10YR 6/3), damp to moist, medium, fine to	SC								
	medium grained		19/							
53			22/ 26	1.83/ 2		52 - 54				
										-
54-	SAND light brownish gray (10YR 6/2) damp									
	to moist, fine grained, some calcareous									-
55	nodules		8/	0 22/ 2						-
55-			0/ 12	0.33/2		54 - 56				
										-
56-	multicolor grain									
-	5									
57-			19/ 21/	0.5/2						
			26	0.07 -		56 - 58				_
58-	SAND with some clay, light gray (10YR 7/2),	sc								
	damp to moist, dense, calcareous nodules, some iron staining									-
59-	, and the second s		11/ 12/	1/2		59 60				
			20			50 - 00				
60	SAND, light gray (10YR 7/1), damp to moist,	SP								-
	line grained, some calcareous noucles		16/							-
61-			22/	0.5/ 2		60 - 62				
			25							-
										-
	CLAY with fine sand, light gray (10YR 7/2), damp to moist_stiff_trace plasticity_some	CL								
	calcareous nodules, multicolor sand grain		8/							
63-			9/	1/ 2		62 - 64				
			13							
64										
	SAND, pinkish gray (7.5YR 6/2), damp to moist, fine grained, calcareous nodules and	SP								
65 -	trace pebbles		20/							
			I	!	!					
-	11 A 11 11 15000	.					-			MCDONNELL
Pe	ermit Application 1522B	Attach	ment 5-8	30			F	Revision	0, Marc	n 28, 2022

							Borin	g Numbe	r EB	6-02
Project Na	me City of Victoria Landfill Expansion						Page	•	5 of	6
Project Nu	imber 107608	-					Date		1-22	2-19 I
Depth	Description	Class	Blow Count	Recov.	Run/ Time	Sample. Desig.	P BZ	ID (ppr вн	n) s	. Remarks/ Water Levels
	SAND, pinkish gray (7.5YR 6/2), damp to moist, fine grained, calcareous nodules and trace pebbles	SP	18/ 22	2/2		64 - 66		I	Į	
66 -	CLAY with some sand, brownish yellow (10YR 6/6), damp to moist, trace iron staining	CL								
67			18/ 24/ 27	0.91/2		66 - 68				
68	SAND trace clay, light brownish gray (10YR 6/2), damp to moist, fine to medium grained	sc								
69			24/ 31/ 32	0.83/ 2		68 - 70				
70	iron staining									-
71			9/ 11/ 14	0.33/ 2		70 - 72				
72-										
73			12/ 18/ 26	0.5/ 2		72 - 74				-
			5/ 8/ 12	0.58/ 2		74 - 76				
	interbedded clay layer		8/ 9/ 13	1.33/ 2		76 - 78				
	SAND, yellowish brown (10YR 5/8), damp to moist, with iron staining	sc								
			8/ 10/ 14	1/ 2		78 - 80				
	SAND, pale brown (10YR 6/3), damp to moist, fine to medium grained, some calcareous nodules and pebbles trace subangular,	SP	12/							
	multicolor gravel		14/ 15	0.66/ 2		80 - 82				
Pe	ermit Application 1522B	Attach	I ment 5-8	I 31		I	F	Revision	0, Marc	BURNS MCDONNELL.

							Boring Numbe	r EB	8-02
Project Na	ame City of Victoria Landfill Expansion						Page	6 of	6
Project Nu	umber 107608			I			Date	1-22	2-19 I
Depth	Description	Class	Blow Count	Recov.	Run/ Time	Sample Desig.	РІD (ррі вz вн	n) s	Remarks/ Water Levels
83-	SAND, pale brown (10YR 6/3), damp to moist, fine to medium grained, some calcareous nodules and pebbles trace subangular, multicolor gravel	SP	8/ 14/ 12	0.5/ 2		82 - 84		•	
85	SAND trace clay, light brownish gray (10YR 6/2), damp to moist, fine grained	SC	19/ 22/ 23	0.66/ 2		84 - 86			- - - - -
86			14/ 14/ 19	/2		86 - 88			
88 89 90 91 91 92 93 94 95 96 97 98 98	Bottom of Boring @ 88'								Backfilled with Bentonite Slurry

Drilling Log

Project N City	ame v of Victo	oria I andfill Expa	ansion	Project No. 107608								Boring	g Numbe	FB	-03	}
Ground E	Elevation			Location	TV		I	Latit	ude	13441	952.68	Page				<u> </u>
64.4 Air Monito	4 π. NA	oment		victoria,	IX			Lon	gitude	20432	30.03	Total	Footage	1 01	3	
Deilling	. .	4-Gas	s I o u u t		Dealer			N1-	010		No. 0			37	4	Data Malanina d
Drilling	g Type		Overb	ourden Footage	Beard		age	INC	o. Of San	npies	NO. CO	e Boxes	Dep	oth to vva	ater	Date Measured
Rolary	wasn	3.75		37		0			0		-	-				
Drilling C	ompany	Braun Intertec						Dri Tvi	illers (s)	C. Ci	rews					
Drilling Ri	ig Ardo	co Model K 4x4						Sa	mpler		Split Sp	boon				
Date 1	-17-19 T		То	1-17-19			r	Fie	eld Obsei	rver (s)	M. Pil	าไ			-	
							Blo	w		Run/	Sample	PI	ID (ppr	m)		Remarks/
Depth			Descri	ption		Class	Cou	Int	Recov.	Time	Desig.	ΒZ	BH	S		Water Levels
-															sar	npling performed -
1	1														oth	erwise noted
·							NA	<u> </u>	13							-
-								Ì	/0							-
2																-
																-
3		/ some silt, dark g	ray (10	0YR 4/1), dam	p	СН										
		nst, son, nigh plas	olicity				3/	,								-
4							3/	'	1.33/ 2		3 - 5					-
=																-
5-]							_								
=																-
6																-
1 1]						NA	4	/ 3							-
- ⊢ 7—																-
- I I I I I I I I I I I I I I I I I I I																-
	1															-
	CLAY (10YI	r some fine sand, R 6/2), damp to m	light b oist, ve	rownish gray ery stiff, trace		CL										-
	plasti nodu	icity, calcareous, n les	nanga	nese and iron			6/	,	1 00/ 0							-
]						10		1.03/2		8 - 10					
	1													TE O	DF TE	
	1													TAL		47.5 -
10760]													AVID SCO	TTRA	RKER
so 11-	1												at a	GEOI	- BA	
	1						NA	4	/ 3				OFFE	VY/03	231	
 12]													NAL 1	GEO	
	1															-
		D with silt some cl	av ligt	nt grav (10VP				-								-
	7/2),	damp to moist, de	ense, tr	ace calcareou	s d											-
≧ <u>14</u>	iron s	staining	nouul		u		9/	′								

Revision 0, March 28, 202

								Borin	ng Numb	er EE	3-03
	Project Na	ame City of Victoria Landfill Expansion						Page	9	2 of	3
	Project N	umber 107608						Date		1-17	7-19
	Denth	Description	Class	Blow	Recov	Run/	Sample.	P	PID (pp	m)	Remarks/
┝		SAND with silt some clay, light gray (10YB	SC	14/	1.42/ 2	TIME	Desig.	BZ	ВН	5	
	_	7/2), damp to moist, dense, trace calcareous		15			13 - 15				-
	15	iron staining									-
	15		1								-
											-
	16—										
	_			NA	/3						-
	47 -				, -						-
											-
	-										-
	18—	CLAX with sand and silt pale brown (10XP									
		6/3), damp to moist, medium, trace plasticity,									-
		trace calcareous and manganese nodules, with mottled iron staining		5/							-
	19	Ŭ		6/ 7	2/2		18 - 20				-
											-
	20—										
											-
	21										
				NA	/ 3						-
	22—										
											-
											-
	23										
/7/21											-
T 11	24—			4/ 6/	0.5/2		00 05				
S.GD				9			23 - 25				-
LIAM											
ML	25										
GPJ											-
DFILL	26—										
LAN					10						
ORIA				NA	/3						
VICT	27										
7608											-
SS 10	28—										
5 LOG	10	SAND some silt trace clay, light gray (10YR 7/2), damp to moist, medium, fine grained	SM								
RING		··		12/							
BO	29			14/	0.58/ 2		28 - 30				
LLO	-			19							
INTA	30										
MNC	· · ·										
VIR(31 -			NA							
ΞL	JI	1				I					
	Pe	ermit Application 1522B	Attach	ment 5-8	34			F	Revision	0, Marc	ch 28, 2022

							Borin	ng Numbe	er EE	3-03
Project	Name City of Victoria Landfill Expansion						Page	9	3 of	3
Project	Number 107608						Date		1-17	7-19
Depth	Description	Class	Blow Count	Recov.	Run/ Time	Sample Desig.	P BZ	ID (pp вн	m) s	Remarks/ Water Levels
Depth 32- 33- 34- 35- 36- 37- 38- 39- 40- 41- 42- 44- 42- 44- 45- 46- 47- 48-	SAND trace clay, light gray (10YR 7/2), damp to moist, dense, fine grained very dense, calcareous Bottom of Boring @ 37'	Class SC	Count NA 5/ 5/ 9 14/ 15/ 30	Recov. / 3 1.08/ 2 2/ 2	Time	Desig. 33 - 35 35 - 37	BZ	BH	S	Backfilled with Bentonite Slurry
l	Permit Application 1522B	Attachr	nent 5-8	5			F	Revision	0, Marc	BURNS MCDONNELL

Drilling Log

	Project Na Citv	ame v of Victo	oria Landfill Expa	insio	Project No. n 107608								Boring	Numbe	FR	8-04	L	
	Ground El	levation			Location	ту			Latit	tude	13442	829.13	Page				-	
	Air Monito	oring Equi	pment		viciona,				Lon	gitude	20400	00.1	Total F	ootage	07			
	Drilling	Туре	Hole Size	Over	burden Footage	Bedro	ock Foota	age	No	o. Of San	nples	No. Core	e Boxes	Dep	87 oth to Wa	ater	Date Measur	ed
	Rotary	Wash	3.75"		87		0			0								
	Drilling Co	ompany	Braun Intertec						Dr	illers (s)	C. Ci	rews		•				
	Drilling Rig	g Ardo	co Model K 4x4						Ty Sa	rpe of ampler		Split Sp	oon, Sł	nelby T	ube			
	Date 1-	-23-19		То	1-23-19				Fie	eld Obse	rver (s)	M. Pih	I					
								Blo	w		Run/	Sample	PI	D (ppi	n)		Remarks/	
	Depth			Descr	ription		Class	Cou	unt	Recov.	Time	Desig.	ΒZ	BH	S	Sn	Water Levels	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CLA mois	Y some silt, black (t, soft, high plastici	10YF ity, tra	R 2/1), damp to ace roots		-сн-	-/ -/ -/	A ////////////////////////////////////	/ 3		3 - 5				3-5	in Operform any 5 feet unles erwise noted	ed
LIAMS.GDT 11/7/21	6							NA	A	/ 3								
TORIA LANDFILL.GPJ WIL	8 9 10	CLA` (10Y plast nodu	Y with fine sand, lig R 6/2), damp to mo icity, some calcare les, some mottled	ght br oist, v ous a iron s	ownish gray /ery stiff, trace and manganese staining	·	- CL	-/ -/ -	1	1.08/ 2		8 - 10				8-1	0 Shelby Tube	
INVIRONMENTAL LOG BORING LOGS 107608 VIC		CLA` gray trace with	Y with fine sand an (10YR 6/2), damp calcareous and m mottled iron stainin	nd silt, to mo nanga	, light brownish oist, very stiff, inese nodules,		- <u>c</u>	N/ 5/	A /	/3					AVID SCO	TT BAI		
Ш	 Pe	ermit App	lication 1522B	3			Attachr	nent	5-80	6			Re	evision	0, Marc			.L.

							Borin	g Numb	er EB	3-04
Project Na	ame City of Victoria Landfill Expansion						Page		2 of	6
Project N	umber 107608						Date		1-23	3-19
Depth	Description	Class	Blow Count	Recov.	Run/ Time	Sample Desig.	P _{BZ}	ID (pp вн	m)	Remarks/ Water Levels
15-	CLAY with fine sand and silt, light brownish gray (10YR 6/2), damp to moist, very stiff, trace calcareous and manganese nodules, with mottled iron staining	CL	6/ 7	1.42/ 2		13 - 15			1 -	
16— 17—			NA	/ 3						- - - - - - - - - - - - - - -
18	CLAY with fine sand and silt, light gray (10YR 7/2), damp to moist, stiff, trace plasticity, with calcareous and manganese nodules, trace calcareous pebbles	- <u>c</u> l	4/ 4/ 4	1.33/ 2		18 - 20				
20			NA	/ 3						
23-			6/ 10/ 10	2/ 2		23 - 25				
			NA	/ 3						
	SAND, pinkish gray (7.5YR 6/2), damp to moist, loose, fine grained	 SP	10/ 12/ 13	1/ 2		28 - 30				
			NA							

Revision 0, March 28, 202

							Borin	g Numbe	er EB	8-04
Project Na	ame City of Victoria Landfill Expansion						Page	•	3 of	6
Project N	umber 107608		r —	<u> </u>			Date		1-23	3-19 T
Depth	Description	Class	Blow Count	Recov.	Run/ Time	Sample Desig.	P _{BZ}	ID (pp вн	m) s	Remarks/ Water Levels
32			NA	/ 3					•	- - - - - - - - -
34	to moist, loose, fine to medium grained	SC	13/ 17/ 20	0.5/ 2		33 - 35				-
36			NA							- - - - - - - - - - - - - - - - - - -
38 39 39 40	CLAY with sand, light brownish gray (10YR 6/2), damp to moist, stiff, trace plasticity, some calcareous nodules	CL-	11/ 13/ 14	0.91/2		38 - 40				
			NA	/ 3						
	SAND trace clay, light brownish gray (10YR 6/2), damp to moist, loose, fine grained	SC	11/ 15/ 17	0.58/2		43 - 45				
46			NA	/ 3						- - - - - - - - - - - - - - - - - - -
Pe	ermit Application 1522B	Attachi	nent 5-8		<u> </u>		F	Revision	0, Marc	BURNS MCDONNELL

Project Name City of Victoria Landfill Expansion Page 4 of 6 Project Number 107608 Date 1-22-19 Depth Description Class Blow Count Recov. Time Description Remark 49										
Project Number 107608 Date 1-23-19 Depth Description Class Blow Recov. Time Sample PID (ppm) Remark 49 - - SAND trace clay, light brownish grav(10VR SC 14/ 17/ 0.33/2 48 - 50 50 - - - SAND trace clay, light grav(10VR 7/1), damp SC 14/ 17/ 0.33/2 48 - 50 51 - - - SAND trace clay, light grav(10VR 7/1), damp SC NA /3 - 52 - - SAND trace clay, light grav(10VR 7/1), damp SC - - - 54 - - SAND some silt, light grav(10VR 7/1), damp SC - - - 56 - - - S3 - 55 - - - 57 - - - SAND some silt, light grav(10VR 7/1), damp - SM - - 58 - - -										
Depth Description Class Blow Court Renzy Run/ Box Sample Time PUD (ppm) Renzy 49 - SAND trace clay, light provisity gray (10YR 50 SC 14/ 19 0.33/2 48 - 50 -										
SAND trace day, light brownish gray (10VR 6/2), damp to moist, loose, fine grained SC 14/ 11/ 19 0.33/2 48 - 50 50 SAND trace day, light gray (10VR 7/1), damp SC 14/ 19 0.33/2 48 - 50 51 SAND trace day, light gray (10VR 7/1), damp SC 16/ 16/ 19 53 - 56 54 SAND some sit, light gray (10VR 7/1), damp SC 55 SAND some sit, light gray (10VR 7/1), damp SM 56 SAND some sit, light gray (10VR 7/1), damp SM 57 SAND some sit, light gray (10VR 7/1), damp SM 58 SAND some sit, light gray (10VR 7/1), damp SM 60 NA / 3 61 G2 NA 62 NA / 3	ks/ evels									
1 1 <td>-</td>	-									
49 177 0.33/2 48 - 50 50 NA /3 1 51 SAND trace clay, light gray (10VR 7/1), damp 5C NA /3 53 SAND trace clay, light gray (10VR 7/1), damp 5C 15/19 0.83/2 53 - 55 54 56 NA /3 1 1 56 SAND some slit, light gray (10VR 7/1), damp 5M 53 - 55 53 - 55 56 SAND some slit, light gray (10VR 7/1), damp 5M 23/3 0.42/2 58 - 60 60 NA /3 1 1 1 61 NA /3 1 1 1 62 NA /3 1 1 1	-									
10 10 10 10 10 50 51 10 10 10 51 52 10 10 10 53 - SAND trace clay, light gray (10YR 7/1), damp SC 10 54 - SAND trace clay, light gray (10YR 7/1), damp SC 15/18/19 0.83/2 53 - 55 54 - SAND trace clay, light gray (10YR 7/1), damp SC - SC - SAND trace clay, light gray (10YR 7/1), damp 56 - SAND trace clay, light gray (10YR 7/1), damp SM - SAND trace clay, light gray (10YR 7/1), damp 58 SAND trace fine grained - SM - SAND trace clay, light gray (10YR 7/1), damp 59 - SAND trace fine grained - SM - SAND trace clay, light gray (10YR 7/1), damp 59 - SAND trace fine grained - SM - SAND trace clay, light gray (10YR 7/1), damp 59 - SAND trace fine grained - SM - SM 60 - NA - SB - SB 61 - NA - SB - SB 62 - NA - SB - SB										
50 51 51 52 52 53 53 SAND trace clay, light gray (10YR 7/1), damp 54 55 56 55 56 56 57 58 58 SAND some silt, light gray (10YR 7/1), damp 59 60 61 62 62 NA	-									
50 51 NA /3 52 53 SAND trace clay, light gray (10YR 7/1), damp 5C 53 SAND trace clay, light gray (10YR 7/1), damp 5C 54 15/ 19 0.83/2 53 - 55 56 SAND some sit, light gray (10YR 7/1), damp 5M 57 58 SAND some sit, light gray (10YR 7/1), damp 58 SAND some sit, light gray (10YR 7/1), damp 5M 59 60 58 - 60 61 NA /3 62 NA /3	-									
51 53 - SAND trace day, light gray (10YR 7/1), damp SC 15/ 0.83/2 53 - 55 54 - - - - - - 54 - - - - - - 56 - - - - - - 56 - - - - - - 57 - - - - - - 56 - - - - - - 57 - - - - - - 58 - - - - - - 59 - - - - - - 60 - - - - - - 61 - - - - - - 62 - - - - - -	-									
51 - - NA /3 - 52 - - SAND trace day, light gray (10YR 7/1), damp to moist, loose, fine grained, trace iron SC - - 54 - - - - - - 55 - - - - - 56 - - - - - 57 - - - - - 58 - SAND some sitt, light gray (10YR 7/1), damp to moist, loose, fine grained SM - 59 - - - - - 60 - - - - - 61 - - - - - 62 - - - - -	-									
1 SAND trace clay, light gray (10YR 7/1), damp to moist, loose, fine grained, trace iron staining SC 15/ 15/ 18/ 0.83/2 53 - 55 56										
52 - - - - - - - 53 - SAND trace clay, light gray (10VR 7/1), damp to moist, loose, fine grained, trace iron 5C - - - 54 - - - - - - - 54 - - - - - - 55 - - - - - - 56 - - - - - - 57 - - - - - - 58 - SAND some silt, light gray (10YR 7/1), damp SM - - 59 - - - - - - 60 - - - - - - 61 - - - - - - 62 - - - - - -	-									
53 - SAND trace clay, light gray (10YR 7/1), damp to moist, loose, fine grained, trace iron SC 15/ 18/ 19 0.83/2 53 - 55 54 - - - - - 54 - - - - - 56 - - - - - 57 - - - - - 58 - SAND some silt, light gray (10YR 7/1), damp SM - 59 - - - - - 60 - - - - - 61 - - - - - 62 - - - - -	_									
53 - </td <td>-</td>	-									
53 SAND trace clay, light gray (10VR 7/1), damp to moist, loose, fine grained, trace iron staining SC 15/ 18/ 18/ 18/ 0.83/2 53 - 55 54 55 NA /3 1 56 56 NA /3 1 57 58 SAND some sitt, light gray (10VR 7/1), damp to moist, loose, fine grained SM 23/ 50/ 3 0.42/2 58 - 60 59 60 61 NA /3 1 62 NA /3 1 1	-									
54 to moist, loose, fine grained, trace iron 55 55 56 56 57 58 58 SAND some silt, light gray (10YR 7/1), damp 59 59 60 61 62 NA 73 73										
54	-									
19 30-33 55 56 56 57 57 58 58 -SAND some silt, light gray (TOYR 7/1), damp 58 -SAND some silt, light gray (TOYR 7/1), damp 59 59 60 60 61 NA 62 NA	_									
55- 56- 56- 57- 58- 58- SAND some silt, light gray (10YR 7/1), damp 59- 59- 60- 23/ 61- 61- 62- NA	-									
50 56 57 58 SAND some silt, light gray (10YR 7/1), damp to moist, loose, fine grained SM 23/ 50/ 3 0.42/2 58 - 60 60 61 61 NA / 3 1 62 62 NA / 3 1	-									
1 1 1 1 56 57 58 SAND some silt, light gray (10YR 7/1), damp to moist, loose, fine grained SM 59 60 23/ 50/ 3 0.42/2 58 - 60 60 61 NA / 3 61 NA / 3 1	-									
56	-									
57- 57- 58- SAND some silt, light gray (10YR 7/1), damp 58- SAND some silt, light gray (10YR 7/1), damp SM 23/ 59- 60- 23/ 58-60 61- 61- NA / 3 62- NA / 3 1	-									
57- 58- SAND some silt, light gray (10YR 7/1), damp to moist, loose, fine grained SM 23/ 50/ 3 0.42/2 58 - 60 60- 60- 1 NA /3 1	-									
57 - </td <td>-</td>	-									
58 SAND some silt, light gray (10YR 7/1), damp to moist, loose, fine grained SM 23/ 50/ 3 0.42/2 58 - 60 60 61 61 NA / 3 62 62 1 1 1	-									
58 SAND some silt, light gray (10YR 7/1), damp to moist, loose, fine grained SM 23/ 50/ 59 60 58 - 60 60 61 NA 73 62 62 1 1	-									
59										
59	-									
	_									
	-									
	-									
	-									
	-									
80										
	-									
	-									
	-									
	-									
	-									
	-									
	-									
S BURNS										
Permit Application 1522B Attachment 5-89 Revision 0, March 28, 2022										

		Borin	Boring Number EB-04							
Project Na	ame City of Victoria Landfill Expansion	Page)	5 of	6					
Project N	umber 107608						Date		1-23	3-19
			Blow		Dun/	Somple	Р	ID (ppr	n)	Bemerke/
Depth	Description	Class	Count	Recov.	Time	Desig.	ΒZ	BH	S	Water Levels
-								•		-
										-
66										
			NA	/ 3						-
67-										-
										-
=										-
68-	SAND, light brownish gray (10YR 6/2), damp	SP								
=	to moist, fine to medium grained, multicolor grains, some calcareous, manganese and iron									-
69-	nodules		10/ 12/	1.5/ 2		69 70				
=			12			00 - 70				-
										-
/0										
-										-
71-										_
			NA	/ 3						-
72-										-
										-
=										
73-	SAND trace silt, light brownish gray (10YR	SM								73-75 Shelby Tube; _
=	6/2), damp to moist, loose, fine grained		, I.							poor recovery –
74-			-/ -/	0.33/ 2		73 75				-
			-			13-13				-
-										-
, , , , , , , , , , , , , , , , , , , ,										-
										-
76										
			NA	/ 3						
- 77										
										-
										-
78	No Recovery	1								78-80 Shelby Tube
			,							-
79-			-/	0/2		78 - 80				
			-							-
										-
	SAND, light brownish gray (10YR 6/2), damp	SP								-
	subangular to subrounded gravel		24/							
81-			50/	1.66/ 2		80 - 82				
			1							-
82 -										-
									× E	BURNS
P	ermit Application 1522B	F	Revision	0, Marc	MCDONNELL.					

		Boring Number EB-04							
Project Na	ame City of Victoria Landfill Expansion	Page	6 of	6					
Project Nu	umber 107608	Date 1-23-19							
Depth	Description	Class	Blow Count	Recov.	Run/ Time	Sample Desig.	PID (ppm вz вн) s	Remarks/ Water Levels
83-	SAND some clay, pale brown (10YR 6/3), damp to moist, medium, fine grained, trace subangular gravel	-sc	NA 12/ 14/	1.17/ 2					-
85	SAND some clay, pale brown (10YR 6/3), damp to moist, medium, fine to coarse grained, trace subangular gravel	SC	19			03 - 03			-
87			25			85 - 87			-
88	Bottom of Boring @ 87'								Backfilled with Bentonite Slurry _
89									-
90									-
91 11									-
									-
94 1									-
95									-
96									-
97									-

Drilling Log

ſ	Project Name Project No. Boring Number											3-05	5					
Ground Elevation Location La										itude	13442	071.13	Page 1 of 2					
┢	62.9 Air Monito	9 π. NA	VD88 pment		Victoria,	IX			Lor	ngitude	26423	94.99	Total F	ootage	1 01	r 3		
╞	Drillin r	Turne	4-Gas	3	where Contours	Deduc	al Fasta					No. Cor	- Davias	Dam	37		Data Maggurad	
+	Rotary	Wash	3 75"	Over	37	Deuro				0. OI San	npies	NO. CON	e Doxes	Dep		alei		
+		maany	Braun Intertec		01		0			rillore (c)								
╞	Drilling Di								Ту	ype of	0.0	Split Sp	000					
	Doto 1	17-10		то	1_17_10				Sa Ei	ampler	nuor (c)							
+							iver (s)											
	Depth Description						Class	Blo	w	Recov	Run/ Time	Sample					Remarks/ Water Levels	
┢				0000			01000	000		110007.		Desig.	DZ	вп	3	Sp	lit Spoon _	
	_															sar eve	mpling performed – ery 5 feet unless –	
	1															oth	erwise noted	
	_							NA	Ą	/ 3							-	
	2																	
	Ξ																-	
	3				$\frac{1}{2}$ $\frac{1}$													
		mois	t, soft, medium to h	nigh p	plasticity, trace													
	_ roots							3/ 2/	 	1.83/2							_	
	. –							4				3 - 5					-	
																	-	
																	-	
	<u> </u>																-	
5	0																-	
11/7/2	_ =								Ą	/3							-	
S.GDT	(-	
LIAMS	_																-	
J WIL	8	CLA	Y some fine sand,	light I	browish gray		- CL											
LL.GP	=	plast	icity, some calcare	ous a	and manganese			3/	/								-	
ANDF	9	nouu	lies					5/ 9	/	1.33/ 2		8 - 10						
DRIA L	-													15	ATE OF	TEX		
VICTO	10-													*	X	7	× -	
07608	=													DAV	ID SCOT	FBARK	JER *	
JGS 1 (11-													No.	GEOL	GY 1		
NG LO	_							NA	Ą	/ 3				1.5510	NAL V	GEOS	=	
BORI	12—																_	
- LOG																	-	
ENTAI	13-																-	
RONM		6/2),	r with sand, light b damp to moist, ver	rowis ry stif	sn gray (10YR ff, trace plasticity	y,											-	
ENVI	14 -	trace mottl	e calcareous and m ed iron staining	langa	anese nodules,			4/	/									
															× E	BUR	NS	
Permit Application 1522B Attachment 5-92 Revision 0, March 28, 2022																		

		Borir	ng Numbe	r EB	-05					
Project N	ame City of Victoria Landfill Expansion						Page)	2 of	3
Project N	umber 107608						Date		1-17	-19
							Р	PID (ppr	n)	
Depth	Description	Class	Blow Count	Recov.	Run/ Time	Sample. Desig.	BZ	вн	s	. Remarks/ Water Levels
	CLAY with sand, light browish gray (10YR	CL	5/	1.25/ 2		-				
=	6/2), damp to moist, very stiff, trace plasticity, trace calcareous and manganese podules					13 - 15				
15-	mottled iron staining	<u> </u>								
=										
16-										
=			NA	/ 3						-
17-										-
=										-
=										-
18-	CLAY some fine sand and silt, light browish	CL.								
=	gray (10YR 6/2), damp to moist, stiff, trace plasticty, trace calcareous, manganese, and									-
19-	iron nodules, 1-inch gravel layer at 18.5 ft		5/ 5/	1.17/2		10 00				-
			8			18 - 20				-
										-
20-										
=										-
21-										
=			ΝΑ	12						-
				/ 3						-
22-										
=										-
23-										
										-
			7/							-
3 24			11/	1/2		23 - 25				
										-
25-										
										-
26										-
			NA	/ 3						-
27—										
										-
										-
	SAND trace silt, light gray (10YR 7/2), damp	SM								-
	to moist, loose, line grained		15/							-
29 –			18/	1/ 2		28 - 30				
			19							-
										-
30										-
			NA							
<u>- 31 –</u>]								_	
									XB	
P	ermit Application 1522B	Attach	ment 5-9	93			F	Revision	0, Marcl	n 28, 2022

Project Name City of Victoria Landfill Expansion	Page 3 of Date 1-17	3
	Date 1-17	
Project Number 10/608		-19
Depth Description Class Blow Count Run/ Recov. Sample Desig.	PID (ppm) вz вн s	Remarks/ Water Levels
Depth Description Class Bow Record Record Pume Sample 32	BZ BH S	Backfilled with Bentonite Slurry
Permit Application 1522B Attachment 5-94	Revision 0, Marc	

Drilling Log

Project Name Project No. Boring Numbe City of Victoria Landfill Expansion 107608												EB	6-06	;				
	Ground El	levation	VD88	Locati	on /ictoria	тγ			Latitude	de	13441	621.93	Page 1 of 6					
	Air Monito	ring Equi	pment		viciona,				Longitu	de	20427	00.00	Total	Footage	1 01	0		
	Drilling	Туре	Hole Size	Overburden	Footage	Bedro	ock Foota	age	No. O	f Sar	nples	No. Cor	e Boxes	Dep	95 oth to Wa	ater	Date Measure	ed
	Rotary	Wash	3.75"	95			0	-		9	-		_					
	Drilling Co	ompany	Braun Intertec	•				Drillers (s) C. Crews										
	Drilling Rig	g Ardo	co Model K 4x4				Type of Sampler Split Sp						ooon, Shelby Tube					
	Date 1-	-18-19		то 1-21	-19		-	_	Field	Obse	erver (s)	M. Pih	ıl					
								Blo	NA/		Run/	Sample	PI	D (ppr	n)		Remarks/	
	Depth			Description			Class	Сог	unt Re	cov.	Time	Desig.	ΒZ	BH	S		Water Levels	
									1	3						Spl sar eve oth	it Spoon npling performe rry 5 feet unles erwise noted	ă »
MS.GDT 11/7/21	3 4 4 5 1 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1	FILL brusi	(compost area)-wo	ood chips ar oark, dry	id pieces	5,		NA	4	3				(A DAVID	E OF SCOTI	TE PARKER	
308 VICTORIA LANDFILL.GPJ WILLIA	8	CLA' soft,	Y, dark gray (10YF high plasticity, son	R 4/1), damp ne wood chi	to moist			2/ 2/ 2	0.1	7/2		8 - 10				Sai for and	mples collected ASTM D4318 J D2216	
INVIRONMENTAL LOG BORING LOGS 1076		CLA` (10Y plast	Y some fine sand a R 5/2), damp to m icity, trace calcare	and silt, gray oist, mediun ous nodules	ish brow n, mediur		<u>c</u> L	NA	A /	3						13-	15 Shelby Tub	œ
ш	Pe	ermit App	lication 1522B				Attachr	nent	5-95			. 1	R	evision	0, Marc			L.

			Borir	ig Numb	_{ber} E	ΞB	-06					
	Project Na	ame City of Victoria Landfill Expansion	Page	•	2	of !	6					
	Project N	umber 107608						Date		1	-18	-19
	Depth	Description	Class	Blow Count	Recov.	Run/ Time	Sample Desig.	Р вz	ID (pp вн	om)	3	Remarks/ Water Levels
	15	CLAY some fine sand and silt, grayish brown (10YR 5/2), damp to moist, medium, medium plasticity, trace calcareous nodules	CL		1.58/ 2		EB-06 13 - 15		•	_!		Samples collected for ASTM D2216 and D5084
	16			NA	/ 3							
	17											
	18	CLAY some fine sand and silt, light brownish gray (10YR 6/2), damp to moist, stiff, mottled iron staining, trace calcareous nodules, and iron nodules	CL	4/ 4/ 6	2/ 2		18 - 20					
	20											
	21— 22—			NA	/ 3							
7/21	23	trace manganese nodules	CL									
ILLIAMS.GDT 11/	24			5/ 4/ 6	2/ 2		23 - 25					
LANDFILL.GPJ M	26											- - -
107608 VICTORIA	27			NA	/3							
TAL LOG BORING LOGS	28	CLAY with fine sand, gray (10YR 6/1), damp to moist, stiff, medium plasticity, trace calcareous nodules and pebbles	ĊL-	7/ 7/ 7	2/ 2		28 - 30					
ENVIRONMENT	30 			NA								

		Borin	Boring Number EB-06								
Project Na	ame City of Victoria Landfill Expansion		Page 3 of 6								
Project N	umber 107608						Date		1-	-18-	-19
Depth	Description	Class	Blow Count	Recov.	Run/ Time	Sample Desig.	P BZ	ID (р вн	om) s		Remarks/ Water Levels
32-			NA	/ 3				-	-		
34	CLAY with fine sand, light brownish gray (10YR 6/2), damp to moist, stiff, trace plasticity, trace calcareous nodules and pebbles	CL	7/ 10/ 12	1.25/ 2		EB-06 33 - 35					Sample collected for ASTM D422
35— 36— 37—			NA	/ 3							
38-	SAND trace silt, light brownish gray (10YR 6/2), damp to moist, loose, fine grained	 SM	10/ 18/ 20	0.83/ 2		38 - 40					
			NA	/ 3							- - - - - - - - - - - - - - - - - - -
			10/ 18/ 25	0.83/ 2		EB-06 43 - 45					Sample collected for ASTM D422
46			NA	/3							- - - - - - - - - - - - - - - - - - -

Revision 0, March 28, 202

		Borir	ng Numbe	r EB	8-06					
Project N	ame City of Victoria Landfill Expansion	Page	•	4 of	6					
Project N	umber 107608				1		Date		1-18	3-19
Depth	Description	Class	Blow Count	Recov.	Run/ Time	Sample Desig.	Р вz	PID (ppr	n) s	Remarks/ Water Levels
_	SAND trace clay, light gray (10YR 7/2), damp	SC						!		-
	to moist, line grained, mottled from staining		10/							-
49-			20/	1/ 2		48 - 50				
			28							
50-										
=										
51-										
=			NA	/ 3						-
52-										
=										-
53	SAND, light brownish gray (10YR 6/2), damp	SP								
-										-
54-			50/5	0.66/ 2		53 - 55				
-										-
55										-
55 =										
=										
56										
=			NA	/ 3						
57-										
										-
										-
58	CLAY with fine to medium sand, gray (10YR	CL								
	staining		8/							-
59-			9/	2/2		58 - 60				
			12							-
										_
61-										
			NA	/ 3						-
										-
	1									-
g 63	SAND trace clay, light yellowish brown (10YR	sc								
	iron staining									-
64-			22/ 50/3	0.66/ 2		63 - 65				
	}									-
65 -	•									-
									S E	BURNS
Р	ermit Application 1522B	Attachr	ment 5-9	98			I	Revision	0, Marc	MSDONNELL.

ENVIRONMENTAL LOG BORING LOGS 107608 VICTORIA LANDFILL. GPJ WILLIAMS.GDT 11/7/21

			Borin	ng Numbe	r EB	-06						
Proj	ect N	ame City of Victoria Landfill Expansion		Page	9	5 of	6					
Proj	ect N	umber 107608				1		Date		1-18	3-19 T	
De	pth	Description	Class	Blow Count	Recov.	Run/ Time	Sample. Desig.	P BZ	ID (ppi вн	n) s	Remarks/ Water Levels	
CANDFILL.GPJ WILLIAMS.GDT 11/7/21	appth	SAND, light brownish gray (10YR 6/2), damp to moist, loose, fine to medium grained, multicolor grains, trace calcareous nodules CLAY with fine sand and silt, light gray (10YR 7/2), damp to moist, medium, trace plasticity, trace iron staining, trace calcareous nodules	Class SP	Blow Count NA 27/ 50/4 NA 8/ 8/ 16 NA	Recov. / 3 0.66/ 2 / 3 1.5/ 2 / 3	Run/ Time	Sample . Desig. 68 - 70 EB-06 73 - 75	P BZ	ID (ppi	n) s	Samples collected for ASTM D422 and D4318	
8 2 4 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7	8 9 1 9			-/ -/ -	1.17/ 2		EB-06 78 - 80				78-80 Shelby Tube	
ENVIRONMENTAL LOG	1 2			NA	/ 3							
	Permit Application 1522B Attachment 5-99 Revision 0, March 28, 2022											
		Borin	ıg Num	nber	EB	-06						
-----------	--	------------	------------	--------	------	---------	------	-------	----	------	------------------	
Project N	ame City of Victoria Landfill Expansion						Page	;		6 of	6	
Project N	umber 107608						Date			1-18	3-19	
			Blow		Run/	Sample	P	ID (p	pm	ו)	Remarks/	
Depth	Description	Class	Count	Recov.	Time	Desig.	ΒZ	BH		S	Water Levels	
=											-	
			INA								-	
83-	SAND some clay, light brownish gray (10YR	-sc									-	
=	6/2), damp to moist, dense, fine grained										-	
84-			34/ 24/	1/2		02 05					-	
=			25			03 - 05					-	
											-	
85											-	
=			34/								-	
86			23/	0.5/2		85 - 87						
=			23								-	
87_											-	
											-	
=			NA								-	
88-	SAND, light brownish gray (10YR 6/2), damp	SP		-								
=	to moist, fine grained, calcareous and iron nodules, trace subangular gravel										-	
89-			34/ 23/	1.17/2							-	
=			23			88 - 90					-	
											-	
90-											-	
=											-	
91-												
			NA	/3							-	
											-	
92											-	
											-	
93—	CLAY some fine sand, light brownish grav	- <u>-</u>										
	(10YR 6/2), damp to moist, very stiff, multicolor grains, sandy gravel layer 94' to	_									-	
	94.5' with subangular gravel and heavy iron		23/ 21/	15/2							-	
	staining		20	1.0, 2		93 - 95					-	
95-												
=	Borrow of Boring (0) 82.										Backfilled with	
96-											Bentonite Slurry	
											-	
											-	
9/												
											-	
98-												
											-	
99 -											-	

Pr	roject Na Citv	me of Victo	ria Landfill Evna	Project No.							Boring	Number FR	-07	
G	round Ele	evation		Location			L	atitude	13441	135.03	Page		01	
Ai	62.6 r Monitor	ft. NA	/D88	Victoria,	ТХ		L	ongitude	26430	63.23	Total F	1 of	3	
			4-Gas	3							Total I	37		
	Drilling	Туре	Hole Size	Overburden Footage	Bedro	ock Foota	age	No. Of Sa	mples	No. Core	e Boxes	Depth to Wa	ater	Date Measured
F	Rotary N	Wash	3.75"	37		0		0			•			
Di	rilling Co	mpany	Braun Intertec					Drillers (s)	C. C	rews				
D	rilling Rig	Ardo	o Model K 4x4					Type of Sampler		Split Sp	oon			
Da	ate 1-	17-19		то 1-17-19				Field Obse	erver (s)	M. Pih	I			
											PI) (npm)		
	Depth			Description		Class	Blov Cou	w nt Recov	Run/ Time	Sample Desig	87		ļ,	Remarks/ Water Levels
<u> </u>				Decemption		Clabo	000			Doolg.	DZ	ы	Split	Spoon _
													sam ever	pling performed – v 5 feet unless –
	1												othe	rwise noted
	=						NA	/3						-
	2													-
	<u>_</u>													-
														-
	3	CLA	some silt, black (10YR 2/1), damp to		СН								-
	Ξ	moisi	, son, nign plastici	ity			2/							-
	4						2/	0.33/ 2		3 - 5				
														=
	5											SIATE	OF TE	- 4
	_											*		× =
												DAVID SC	OTT BAF	RKER
5												GEO GEO	1LOGY 2931	
11/7/2							NA	/3				SSIONAL	ENSER	-
GDT	7												V GE	-
IAMS.	-													-
MILL	8		/ some fine sand a	and silt, light brownis	h	- <u>_</u>				+				
GPJ		gray plasti	(10YR 6/2), damp city, some calcare	to moist, stiff, mediu	m									-
IDFILL	9_	nodu	les				4/ 5/	1.42/2						
A LAN	=						7			0 - 10				-
TOR	10													-
38 VIC														-
1076														-
LOGS	11-													
SING I	=						NA	/ 3						-
BOF	12													
ILLOC														-
IENTA	13													
NON	=	6/1),	damp to moist, stil	ff, trace plasticity, wit	h									-
ENVI	14 -	mottle nodu	ea iron staining, tra les	ace manganese			4/							

Permit Application 1522B

Revision 0, March 28, 202

							Borin	ıg Numb	er EE	3-07
Project Na	ame City of Victoria Landfill Expansion						Page	•	2 of	3
Project Nu	umber 107608						Date		1-17	7-19
			Blow		Run/	Sample	P	ID (pp) m)	Remarks/
Depth	Description	Class	Count	Recov.	Time	Desig.	BZ	вн	S	Water Levels
	CLAY some fine sand and silt, gray (10YR 6/1), damp to moist, stiff, trace plasticity, with	CL	5/	2/2		13 - 15				-
	motiled iron staining, trace manganese									
15-	nouues									
=										
16-										
			NA	/3						
17-										
=										
18-										
=			5/							
19-			5/	2/2		18 - 20				
20-										
=										-
21-										
			NA	/ 3						
22-										
=										-
23-	CLAY with fine sand and silt, light brownish									
	gray (10YR 6/2), damp to moist, stiff, trace calcareous pebbles									-
24—			5/ 5/	2/2		00 05				
			7			23 - 25				-
										-
25-										
										-
26										
			NIA	12						-
			NA	/ 3						-
27-										
										-
28-										
	to moist, loose, fine grained	SM								-
	-		5/							
<u>29</u>			13/ 27	1/2		28 - 30				-
		1	_·							-
30-		1								
		1	ΝΑ							-
31 -		1								
- <u> </u>				E						
-	11 A 11 / 15000	A		~~			_	.		MCDONNELL
Pe	ermit Application 1522B	Attachn	nent 5-1	02			F	Revision	0, Marc	n 28, 2022

			Borin	ig Numbe	er EB	8-07				
Project N	ame City of Victoria Landfill Expansion						Page	;	3 of	3
Project N	umber 107608						Date		1-17	7-19
Depth	Description	Class	Blow Count	Recov.	Run/ Time	Sample Desig.	P _{BZ}	ID (ррі вн	m) s	Remarks/ Water Levels
Depth 32 33 34 35 36 37 40 41 41 42 43 44 45 46 46	Description SAND, light gray (10YR 7/1), damp to moist, loose, fine grained SAND some clay, light gray (10YR 7/1), damp to moist, fine grained Bottom of Boring @ 37'	Class SP SC	Blow Count NA 7/ 14/ 23 10/ 17/ 16	Recov. / 3 0.66/ 2 0.5/ 2	Run/ Time	Sample Desig. 33 - 35 35 - 37	P BZ	ID (ppi	m) s	Backfilled with Bentonite Slurry
≝ <u>48</u>	I ermit Application 1522B	1	F	Revision	0, Marc	BURNS MCDONNELL.				

Project	t Name City of Victo	oria Landfill Expa	Project No. Insion 107608							Boring	Numbe	, EB	8-08	8	
Ground	d Elevation	VD88	Location	тх		L	atitude	13440	629.72 43.15	Page		1 01	f 5		
Air Mo	nitoring Equi	pment 4-Gas		17		L		20120	10.10	Total F	ootage	67			
Drill	ling Type	Hole Size	, Overburden Footage	Bedrock	k Foota	ge	No. Of Sar	nples	No. Core	Boxes	Dep	th to Wa	ater	Date Measu	red
Rota	iry Wash	3.75"	67		0		5								
Drilling	Company	Braun Intertec					Drillers (s)	C. C	rews						
Drilling	Rig Ardo	co Model K 4x4					Type of Sampler		Split Sp	oon, Sh	nelby T	ube			
Date	2-13-19		то 2-13-19				Field Obse	rver (s)	M. Pih	I					
						Blov	N	Run/	Sample	PII	D (ppn	n)		Remarks/	
Dept	h		Description		Class	Cour	nt Recov.	Time	Desig.	ΒZ	BH	S	Spl	Water Levels	
1-						NA	. /3						san eve oth	ry 5 feet unle erwise noted	
4-	CLA dam	Y trace silt, very da o to moist, soft, hig	ark gray (10YR 3/1), h plasticity		СН	2/ 3/ 4	1.25/ 2		3 - 5			AVID SCO	DF TE	KER L	-
-0 -7						NA	/3					AL T	C GEO	3	
- 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01	CLA yello trace stain	Y with very fine gra wish brown (10YR plasticity, trace irc ing	in sand and silt, light 6/4), damp to moist, on and manganese	t	CL	4/ 5/ 7	1.17/ 2		EB-08 8 - 10				Sar for	nple collected ASTM D422	
MENTAL LOG BORING LOGS 107608 - 11		Y with very fine are	ined sand and silt			NA	. /3								
/IRON	light mois	yellowish brown (1 t, trace plasticity. ti	0YR 6/4), damp to race iron, manganes	e		_ ,									-
ä <u>14</u>	<u>stain</u> Permit App	ing, some mottled	iron staining	 A	ttachm	5/	-104		<u> </u>	Re	evision (0, Marc			

			Borin	g Numbe	er EB	8-08				
Project Na	ame City of Victoria Landfill Expansion						Page	•	2 of	5
Project N	umber 107608						Date		2-13	3-19
Donth	Description	Class	Blow	Basay	Run/	Sample	P	ID (ppi	m)	Remarks/
	CLAY with very fine grained sand and silt, light yellowish brown (10YR 6/4), damp to moist, trace plasticity, trace iron, manganese staining, some mottled iron staining	CL	6/ 7	1.25/ 2		13 - 15	BZ	ВН	5	
			NA	/ 3						
18	CLAY with very fine grained sand and silt, light yellowish brown (10YR 6/4), damp to moist, stiff, trace plasticity, trace calcareous nodules and pebbles	- <u>c</u> l	8/ 9/ 10	1.67/ 2		18 - 20				
21			NA	/ 3						
	SAND with clay, light gray (10YR 7/2), damp to moist, very fine to fine grained, some calcareous nodules and subangular pebbles	SC	9/ 9/ 12	0.42/ 2		23 - 25				
			NA	/ 3						
	SAND, light brownish gray (10YR 6/2), damp to moist, fine grained, trace calcareous gravel	SP	8/ 9/ 12	0.42/ 2		EB-08 28 - 30				Sample collected
31_			NA							

Revision 0, March 28, 202

		Borin	ig Numbe	r EB	8-08							
Project Na	ame City of Victoria Landfill Expansion						Page	•	3 of	5		
Project Nu	umber 107608		<u> </u>				Date		2-13	3-19 T		
			Blow		Run/	Sample	Р	ID (ppr	n)	Remarks/		
Depth	Description	Class	Count	Recov.	Time	Desig.	ΒZ	BH	S	Water Levels		
				10						-		
=				/3						-		
32-			NA									
=										-		
33-	SAND with clay, very nale brown (10YR 7/3)	- <u>sc</u> -								33-35 Shelby Tube		
	damp to moist, loose, with some calcareous											
34			-/	0 42/ 2		EB-08				-		
			-	0.42/2		33 - 35				Samples collected _ for ASTM D2216 -		
										and D5084 -		
35-												
-										-		
36-												
=			NA	/ 3								
37—												
-												
38 -												
	SAND, light brownish gray (10YR 6/2), damp to moist, loose, fine grained, trace calcareous	SP										
=	rounded gravel		11/							-		
39-			12/ 15	0.33/ 2		38 - 40				Sample collected		
-										for ASTM D4318 -		
40-												
41-												
			NA	/3						-		
										-		
43-	SAND, light brownish gray (10YR 6/2), damp	SP										
	graded, multicolor grains, trace iron staining		15/							-		
44			16/	0.42/2		43 - 45						
			20									
45-												
										-		
			NI A									
			NA	/3						-		
47												
48												
_								.	X			
Pe	ermit Application 1522B	Attachn	nent 5-1	06			F	Revision	0, Marc	n 28, 2022		

		Borin	g Numb	er EE	3-08					
Project Na	ame City of Victoria Landfill Expansion						Page		4 of	f 5
Project N	umber 107608						Date		2-13	3-19
Depth	Description	Class	Blow Count	Recov.	Run/ Time	Sample Desig.	P _{BZ}	ID (pp вн	om)	Remarks/ Water Levels
49	SAND, light brownish gray (10YR 6/2), damp to moist, loose, fine to medium grained, poorly graded, multicolor grains, trace iron staining	SP	20/ 31/ 29	0.25/ 2		48 - 50		<u> </u>	<u> </u>	
51			NA	/ 3						
53	SAND trace clay, light brownish gray (10YR 6/2), damp to moist, dense, fine grained, multicolor grains, trace iron staining	SC	17/ 20/ 23	0.83/ 2		53 - 55				
56			NA	/ 3						
	SAND some clay, light brownish gray (10YR 6/2), damp to moist, fine to coarse grained, calcareous, trace iron staining	- <u>s</u> c	12/ 19/ 22	0.58/ 2		58 - 60				
			NA	/ 3						
	multicolor grains		8/ 8/ 9	0.5/ 2		63 - 65				

Permit Application 1522B

Revision 0, March 28, 202

							Borin	ig Numbe	er EB	8-08
Projec	t Name City of Victoria Landfill Expansion						Page)	5 of	5
Projec	t Number 107608						Date		2-13	3-19
Dept	h Description	Class	Blow Count	Recov.	Run/ Time	Sample Desig.	Р вz	ID (ppi вн	m) s	Remarks/ Water Levels
Dept 66- 67- 68- 69- 70- 71- 72- 73- 74- 73- 74- 75-	h Description SAND some clay, light brownish gray (10YR 6/2), damp to moist, fine to coarse grained, multicolor grains, calcareous, trace iron staining Bottom of Boring @ 67'	Class	Blow Count 12/ 15/ 16	Recov.	Run/ Time	Sample Desig.	ΒZ	ID (ppi	m) <u>s</u>	Remarks/ Water Levels
environmental Log Boring Logs 107608 VICTORIA LANDFILLI, GPJ WILLIAI -0.08 -0.										
	Permit Application 1522B	Attachn	nent 5-1	08			F	Revision	0, Marc	MSDONNELL.

General function List of the state in the s		Project Na City	ame of Victo	oria Landfill Expa	insio	Project No. 107608								Boring	Numbe	FP	3-09)	
Obs./tt. VACIONE, I.X Longuide. 204/249.64 Total Forage 37 Diffing Type Holes Science Overburden Footage Bector Footage No. Of Samples No. Core Boose Depth to Water Date Measured Dolling Type Hole Science Dirition (s) C. Crews		Ground El	evation			Location	T)/			Latit	tude	13440	552.23	Page					-
4-Case 57 Proteing Type Hole Size Date Measured Proteing Type Account Matchine No. C/Crease		56.2 Air Monito	ring Equi	VD88 pment		Victoria,	IX			Long	gitude	26422	95.84	Total F	ootage	1 01	13		_
Uniting type Total S26 Overrund in costage Laboration of costage <thlaboration costage<="" of="" th=""> <thlaboration costag<="" of="" td=""><td></td><td></td><td></td><td>4-Gas</td><td>s </td><td></td><td>D 1</td><td></td><td></td><td></td><td></td><td>. 1</td><td></td><td><u> </u></td><td></td><td>37</td><td></td><td>D (M)</td><td></td></thlaboration></thlaboration>				4-Gas	s 		D 1					. 1		<u> </u>		37		D (M)	
NA NA / 3 PID		Drilling	Type	Hole Size	Over	burden Footage	Bedro		age	NC	o. Of Sar	nples	No. Cor	e Boxes	Dep	th to Wa	ater	Date Measured	
Uniting Kig Ardco Model K 4X Split Spon Dating Kig Description Class Bow Recov. Time Spring PDD (ppm) Depth Description Class Bow Recov. Time Spring PDD (ppm) 1 Description Class Bow Recov. Time Spring PDD (ppm) 3 CLAV with Time sand and sit, tiple brownish gray (10YK 62), damp to molst, stiff, trace plasticity, motified iron staining NA / 3 4 - - - - - 6 - - - - - 7 - - - - - - 9 - - - - - - 1 - - - - - - 1 - - - - -		Rolary	wasn	3.75		37		0			0			-					
Date 1-24-19 To 1-24-19 Field Observer (s) M. Phil Depth Description Class Count Record Field Observer (s) M. Phil Depth Description Class Count Record Field Observer (s) M. Phil 1 Depth Description Class Count Record Field Observer (s) M. Phil 2		Drilling Co	mpany							Dri	pe of	U. U	rews						
Date 1-24-19 To 1-24-19 Pield Observer (s) M. PIN Depth Description Class Bow Recor. Rivi Sample PID (ppm) Remarks/ Water Levels 1		Drilling Rig	g Arac		_	4 0 4 4 0				Sa	impler		Split Sp	oon					
Depth Description Class Bow Count Record Rmm Sample beig PUD (ppm) Remended Water Lovels 1 -		Date 1-	24-19		То	1-24-19				Fie	eld Obse	rver (s)	M. Pir		_ /	<u> </u>			
Depth Description Lass Count Party Description Split Spoon sampling performed energy file training 1 -		Dauth			D			0	Blo	w	Deres	Run/	Sample		D (ppr	n)		Remarks/	
1 -		Depth			Descr	ription		Class	COL	Int	Recov.	Time	Desig.	BZ	BH	S	Sp	it Spoon	_
1 -		_															sar	npling performed ery 5 feet unless	_
1000000000000000000000000000000000000		1															oth	erwise noted	_
2 -									N/	A	/ 3								_
3 CLAY with fine sand and sill, light brownish gray (10YR 6/2), damp to moist, stiff, trace plasticity, mottled iron staining CLAY, light brownish gray (10YR 6/2), damp CL 4 4 4 4 3 - 5 6 4 4 4 7 4 4 4 8 CLAY, light brownish gray (10YR 6/2), damp CL 4 9 6 4 4 10 10 14 5 11 12 14 14 12 13 CLAY with fine sand and sill, light brownish gray (10YR 6/2), damp CL 11 14 14 14 12 13 CLAY with fine sand and sill, light brownish gray (10YR 6/2), damp CL 13 CLAY with fine sand and sill, light brownish gray (10YR 6/2), damp CL 14 13 14 13 CLAY with fine sand and sill, light brownish gray (10YR 6/2), damp to moist, very stift, cace clarerous and manufuse clarerous, race iron nodules and iron staining 13 CLAY with fine sand and sill, light brownish gray (10YR 6/2), damp to moist, very stift, cace iron nodules and iron staining 14 13 15 14		2—																-	_
3 CLAY with fine sand and sit, light brownish gray (10YR 6/2), damp to moist, stiff, trace plasticity, motified iron staining 0 3 3 5 4 4 6 1.42/2 3 5 6 4 4 4 4 5 6 4 4 4 6 1.42/2 3 -5 6 7 8 CLAY, light brownish gray (10YR 6/2), damp to moist, stiff, trace plasticity, trace calcareous and manganese nodules, motified iron staining 4/ 6/ 9 2/2 8 0 10 11 12 13 CLAY with fine sand and sit, light brownish gray (10YR 6/2), damp to moist, suff, trace iron nodules and iron italing 0 1/2 8 0																			_
Usery (100 K 62): damp to most stiff, face plasticity, motified iron staining 0.1 3/ 1.42/2 3 - 5 4 - - - - - - 6 - - - - - 6 - - - - - 6 - - - - - 7 - - - - - 8 CLAY, light brownish grav (10YR 6/2), damp to most, stiff, trace plasticity, trace calcareous and manganese nodules, mottled iron staining - - 9 - - - - - 10 - - - - - 11 - - - - - 12 - - - - - 11 - - - - - 12 - - - - - 13 - - - - - 14 - - - - - 14 - - - - - 14 - - - - - 13 - -		3		V with fine cand an		light brownish	·											-	_
1 1 <td></td> <td></td> <td>gray</td> <td>(10YR 6/2), damp</td> <td>to mo</td> <td>oist, stiff, trace</td> <td></td> <td>_</td>			gray	(10YR 6/2), damp	to mo	oist, stiff, trace													_
1000000000000000000000000000000000000		4	plast	ioity, motiled non a	stan in	ig			3/ 4/	/ /	1.42/ 2		2 5					-	_
10 <									6	;			3-5						_
101 0 NA / 3 Image: CLAY, light brownish gray (10YR 6/2), damp to moist, stiff, trace plasticity, trace calcareous and manganese nodules, motited iron staining 0 4/ 2/ 2 8 - 10 9 10 14 14 14 14 14 14 10 11 12 13 CLAY with fine sand and silt, light brownish gray (10YR 6/2), damp to moist, staining 0 1/4 1/3 1/4 11 12 13 CLAY with fine sand and silt, light brownish to moist, very stiff, calcareous, trace iron nodules and iron staining 0 1/3 1/4 13 CLAY with fine sand and silt, light brownish to moist, very stiff, calcareous, trace iron nodules and iron staining 0 5/ 1 1 14 Example to moist, very stiff, calcareous, trace iron nodules and iron staining 5/ 1 1 1		5																-	_
101 0 0 NA / 3 0 8 CLAY, light brownish gray (10YR 6/2), damp to moist, stiff, trace plasticity, trace calcareous and manganese nodules, motiled iron staining 0 4/ 2/2 8 - 10 9 0		Ĩ																	_
101 0 NA / 3 0 8 CLAY, light brownish gray (10YR 6/2), damp to moist, stiff, trace plasticity, trace calcareous and manganese nodules, motiled iron staining 0 4/ 2/2 8 - 10 9 10 0 0 0 0 0 0 0 10 11 0<		6																-	_
101 7 10 <	21	Ŭ Ţ								Δ	13								_
100 1<	- 11/7/	7									70								_
000000000000000000000000000000000000	IS.GD1	í -														SIA	TEO	TEXAS	_
0 CLAY, light brownish gray (10/R 6/2), damp to moist, stiff, trace plasticity, trace calcareous and manganese nodules, mottled iron staining CL 4// 6// 9 2//2 8 - 10 10 10 10 10 11 11 11 11 11 12 11 12 13 CLAY with fine sand and sit, light brownish gray (10/R 6/2), damp to moist, very stiff, calcareous, trace iron nodules and iron staining CL 14 CLAY with fine sand and sit, light brownish gray (10/R 6/2), damp to moist, very stiff, calcareous, trace iron nodules and iron staining CL 5/ 1 1 Evision 0, March 28, 2022	ILLIAM																	TRAPHER	_
0 - <td>W L 4</td> <td></td> <td>CLA to mo</td> <td>Y, light brownish g bist, stiff, trace plas</td> <td>ray (1 sticity</td> <td>I0YR 6/2), damp , trace calcareo</td> <td>o us</td> <td>CL</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>stan</td> <td>JEOL</td> <td>OGY 5</td> <td>_</td>	W L 4		CLA to mo	Y, light brownish g bist, stiff, trace plas	ray (1 sticity	I0YR 6/2), damp , trace calcareo	o us	CL								stan	JEOL	OGY 5	_
00/9 10 0/9 2/2 8-10 10 10 10 10 10 11 11 11 11 11 12 12 12 12 13 CLAY with fine sand and silt, light brownish gray (10YR 6/2), damp to moist, very stiff, calcareous, trace iron nodules and iron staining CL 5/ 14 staining 5/ 10 Statement 5-109	FILL.G		and r	manganese nodule	es, mo	ottled iron staini	ng		4/	/	2/ 2					TE O	129	200	_
10 <	LAND	9							9		21 2		8 - 10			101	VAL Y	GEOSC	_
10 10 11 11 12 12 13 CLAY with fine sand and silt, light brownish gray (10YR 6/2), damp to moist, very stiff, calcareous, trace iron nodules and iron 14 staining	TORIA																		_
11 Image: Second State Sta	DIN NC	10																=	_
90 11 Image: NA / 3 Image: NA / 3 12 Image: NA / 3 Image: NA / 3 Image: NA / 3 13 CLAY with fine sand and silt, light brownish gray (10YR 6/2), damp to moist, very stiff, calcareous, trace iron nodules and iron staining CL Image: NA / 3 Image: NA	1076																		_
12 12 13 CLAY with fine sand and silt, light brownish gray (10YR 6/2), damp to moist, very stiff, calcareous, trace iron nodules and iron staining CL 14 5/ Permit Application 1522B Attachment 5-109	LOGS	11																-	_
12 -	DRING								N/	A	/3								_
13 -	OG B(12																-	_
13 CLAY with fine sand and silt, light brownish gray (10YR 6/2), damp to moist, very stiff, calcareous, trace iron nodules and iron staining CL 5/ 14 Staining 5/ 5/ 5/ Permit Application 1522B Attachment 5-109 Revision 0, March 28, 2022	ITAL L																		_
gray (10 moles), damp to moles, very stin, calcareous, trace iron nodules and iron staining 5/ 14 5/ Permit Application 1522B Attachment 5-109 Revision 0, March 28, 2022	NMEN		CLA	Y with fine sand an	nd silt	, light brownish		CL_		\uparrow								-	_
Permit Application 1522B Attachment 5-109 Revision 0, March 26, 2022	NVIRC		calca	areous, trace iron n	odule	es and iron			5/	/									
Permit Application 1522B Attachment 5-109 Revision 0, March 28, 2022	ш		Stain					1				<u> </u>				N F	SUR	NS	
		Pe	ermit App	lication 1522B				Attachm	nent {	5-10	9			Re	evision	0, Marc	MC h 28,	ONNELL	1==

							Borin	ig Numbe	er EE	3-09
Project Na	ame City of Victoria Landfill Expansion						Page	•	2 of	3
Project Nu	umber 107608				-		Date		1-24	1-19 I
	5		Blow		Run/	Sample.	P	ID (pp	m)	Remarks/
Depth	Description	Class	Count 7/	Recov.	Time	Desig.	ΒZ	BH	S	Water Levels
-	gray (10YR 6/2), damp to moist, very stiff,		10	_, _		13 - 15				-
	calcareous, trace iron nodules and iron staining									
15										
-										-
16-										
-			NA	/3						
				, .						-
1/										
										-
18-	CLAY with fine cond and ailt light brownigh									
	gray (10YR 6/2), damp to moist, very stiff,									-
	calcareous, trace iron nodules and iron staining		5/							
19			8/ 9	1.08/ 2		18 - 20				
-			-							
20-										
21										
			NA	/ 3						-
22-										
23-	SAND, light brownish gray (10YR 6/2), damp	SP								
	to moist, fine grained, trace large calcareous pebbles, rounded to subangular									
24	ponnioo, : on i ao a concertigata.		8/ 12/	1/2						
			14			23 - 25				=
25-										
26-										
			NA	/3						=
27-										
28-										
	SAND with interbedded clay, light gray (10YR 7/1), damp to moist, fine grained, calcareous	SC								
			14/							
29-			22/	0.58/ 2		28 - 30				
		1	30							_
30-		1								
		1								
			NA							
ן אין										
									X ^E	
Pe	ermit Application 1522B	Attachn	nent 5-1	10			F	Revision	0, Marc	h 28, 2022

			Borin	ig Numbe	er EB	3-09				
Project N	ame City of Victoria Landfill Expansion						Page	•	3 of	3
Project N	umber 107608						Date		1-24	I-19
Depth	Description	Class	Blow Count	Recov.	Run/ Time	Sample Desig.	P _{BZ}	ID (ррі вн	m) s	Remarks/ Water Levels
32- 33- 34- 35- 36-	SAND, light yellowish brown (10YR 6/4), damp to moist, loose, fine grained	<u>-</u> SP	NA 8/ 9/ 10	/ 3		33 - 35				
37			24							- - - - -
38 39 39 30 40 41 40 41 42 40 41 42 41 42 43 42 43 44 45 46 47 46 47 48	Bottom of Boring @ 37'								▲ E	Backfilled with Bentonite Slurry
Р	ermit Application 1522B	Attachm	nent 5-1	11			F	Revision	0, Marc	

	Project Na Citv	ame v of Victo	oria Landfill Expa	Insio	Project No. 107608								Borin	g Numbe	FB	8-10)
	Ground El	levation			Location	т∨			Latitu	de	13441	642.93	Page		1 ~	F 2	-
	Air Monito	oring Equi	pment		viciona,				Longi	ude	20410	22.19	Total	Footage		5	
	Drilling	Туре	Hole Size	Overt	burden Footage	Bedro	ock Foota	ige	No.	Of San	nples	No. Core	e Boxes	Dep	37 oth to Wa	ater	Date Measured
	Rotary	Wash	3.75"		37		0	-		0			-				
	Drilling Co	ompany	Braun Intertec						Drille	ers (s)	C. Cr	rews		·			
	Drilling Rig	g Ardo	co Model K 4x4						Type Sam	e of pler		Split Sp	oon				
	Date 1-	-21-19		То	1-21-19				Field	l Obse	rver (s)	M. Pih	l				
								Blo	w		Run/	Sample	Ρ	ID (pp	m)		Remarks/
	Depth			Descri	iption		Class	Cou	int R	ecov.	Time	Desig.	ΒZ	BH	S	Sn	Water Levels
								NA	4	/3						sar eve oth	rerwise noted
	3 4 1 5	CLA damı roots	Y some silt, very da o to moist, soft, hig , trace calcareous	ark gra h plas nodul	ay (10YR 3/1), sticity, trace les		СН	3/ 4/ 4	/ 1.	08/ 2		3 - 5					
LIAMS.GDT 11/7/21	6 							NA	4	/ 3					STATE C		RKER
VICTORIA LANDFILL.GPJ WIL	8	CLA` 6/2), calca	Y some sand, light damp to moist, stil areous, manganese	browi ff, trac e and	ish gray (10YR æ plasticity, trad iron nodules		- CL	8/ 8/ 8	/	1/ 2		8 - 10			SIGNAL S	NSED GEC	
VIRONMENTAL LOG BORING LOGS 107608 \		CLA` 6/2), calca	Y some sand, light damp to moist, stil areous, manganese	 browi ff, trac e nodu	ish gray (10YR e plasticity, tradules, some	 ce	<u>c</u> L	NA	A	/ 3							
EN	<u>14</u>	mottl ermit App	ed iron staining lication 1522B				Attachm	nent 5	5-112				F	Revision	0, Marc	BUR MCI h 28,	NS DONNELL.

				Borin	g Numbe	er EE	B-10				
	Project Na	ame City of Victoria Landfill Expansion						Page	•	2 of	3
	Project Nu	umber 107608						Date		1-21	-19
	Depth	Description	Class	Blow Count	Recov.	Run/ Time	Sample Desig.	P _{BZ}	ID (pp вн	m) s	Remarks/ Water Levels
	15 16	CLAY some sand, light browish gray (10YR 6/2), damp to moist, stiff, trace plasticity, trace calcareous, manganese nodules, some mottled iron staining	CL	9/ 4	1.5/ 2		13 - 15				
	17 17 18 18			NA	/3						
	19 19 20			5/ 5/ 8	1.08/ 2		18 - 20				- - - - - - - - - - - - - - - - - - -
	21	trace calcareous nodules		NA	/ 3						
PJ WILLIAMS.GDT 11/7/21	24 24 25			7/ 9/ 11	1/ 2		23 - 25				- - - - - - - - - - - - - -
S 107608 VICTORIA LANDFILL.G	26 - 			NA	/ 3						- - - - - - - - - - - - - - - - - - -
MENTAL LOG BORING LOGS	28 	SAND some silt, pale brown (10YR 6/3), damp to moist, loose, fine grained, some iron staining	SM	13/ 14/ 18	0.83/ 2		28 - 30				
ENVIRON	31			NA						• -	
	Pe	ermit Application 1522B	Attachn	nent 5-1	13			F	Revision	0, Marc	

							Borin	ıg Numl	ber E	ΞB	-10
Project Na	ame City of Victoria Landfill Expansion						Page	•	3	of	3
Project Nu	umber 107608						Date		1	-21	-19
Depth	Description	Class	Blow Count	Recov.	Run/ Time	Sample Desig.	Р вz	ID (рр вн	om)	3	Remarks/ Water Levels
32	SAND trace clay, white (10YR 8/1), damp to moist, dense, fine grained, calcareous	-sc	NA	/ 3							
34			20/ 23/ 18	0.83/ 2		33 - 35					-
35	SAND, light gray (10YR 7/1), damp to moist, fine grained	SC	20/ 23/ 29	2/ 2		35 - 37					
37-	Bottom of Boring @ 37'										Backfilled with
38											

P	roject Na	me of Victo	ria Landfill Expa	ncion	Project No.							Boring	Numbe	FR	_11		
G	Gity Ground Ele	evation	па сапопп схра	ansion	Location			L	atitude	13440	532.65	Page					
	63.1	ft. NA	/D88		Victoria	, TX		L	ongitude.	26411	63.79	Total	Tootogo	1 of	5		
		ուց բզար	4-Gas	S								TOTAL	oolage	67			
	Drilling	Туре	Hole Size	Overb	ourden Footage	Bedro	ock Foota	age	No. Of Sar	nples	No. Core	e Boxes	Dep	oth to Wa	iter	Date Measu	ired
	Rotary \	Nash	3.75"		67		0		4								
D	rilling Co	mpany	Braun Intertec						Drillers (s)	C. C	rews						
D	rilling Rig	Ardo	o Model K 4x4						Type of Sampler		Split Sp	oon, Sł	nelby T	Tube			
D	ate 2-	12-19		То	2-12-19				Field Obse	rver (s)	M. Pih	I					
												PI	iaa) C	m)			
	Depth			Descri	ption		Class	Blov Cour	v nt Recov.	Run/ Time	Sample Desig.	BZ	BH	, s	۱ ۱	Remarks/ Nater Levels	
								NA	/ 3						Split sam ever othe	Spoon pling perform y 5 feet unle rwise noted	ned ss
	4	CLA moist	∕ some silt, black (t, soft, high plastici	(10YR ity	2/1), damp to		СН	2/ 3/ 4	0.66/ 2		3 - 5		*	STATE O	TT BAR	ER L	
LIAMS.GDT 11/7/21								NA	/ 3				ROTES	GEOL 29 20 20 20 20 20 20 20 20 20 20 20 20 20	SERIE GEOS		
CTORIA LANDFILL.GPJ WIL	8 	CLAN brow plasti mottl	/ some fine sand a n (10YR 6/4), dam city, trace calcared ed iron staining	and silt op to m ous no	t, light yellowis ioist, stiff, trac idules, with	e	CL-	6/ 7/ 10	1.17/ 2		EB-11 8 - 10				Sam for A	ple collected STM D422	
ENVIRONMENTAL LOG BORING LOGS 107608 VI	11 12 13 14	trace	manganese oxide	e staini	ng			NA 5/	/ 3								

								Borin	ig Numbe	er EE	3-11
	Project Na	ame City of Victoria Landfill Expansion						Page	•	2 of	5
	Project N	umber 107608			1			Date		2-12	2-19
	Depth	Description	Class	Blow Count	Recov.	Run/ Time	Sample Desig.	P _{BZ}	ID (pp вн	m) s	Remarks/ Water Levels
		CLAY some fine sand and silt, light yellowish brown (10YR 6/4), damp to moist, stiff, trace plasticity, trace calcareous nodules, trace manganese oxide staining	CL	6/ 8	2/2		13 - 15		Į	<u> </u>	
	10 										
	10 17			NA	/ 3						
	18-	CLAX some fine sand and silt hale brown	- <u>-</u>								
		(10YR 6/3), damp to moist, stiff, some calcareous nodules and pebbles, trace manganese nodules and manganese oxide staining, with mottled iron staining		6/ 7/ 9	2/ 2		18 - 20				
	20										
	21— 22—			NA	/ 3						
5	23-	light gray (10YR 7/2)									
MS.GDT 11/7/2	24			5/ 7/ 10	2/ 2		23 - 25				
LL.GPJ WILLIA	25										
CTORIA LANDFI	26— — 			NA	/ 3						
JGS 107608 VIG	28	SAND trace clay, light gray (10YR 7/1), damp	<u>sc</u>								
LLOG BORING LC	29	to moist, fine to very fine grained		8/ 10/ 14	1.08/ 2		EB-11 28 - 30				Sample collected for ASTM D422
ENVIRONMENTA	30			NA							
- 6	Pe	ermit Application 1522B	Attachn	nent 5-1	16			F	Revision	0, Marc	BURNS MCDONNELL

			Borin	ng Numbe	er EB	5-11									
Project N	Name City of Victoria Landfill Expansion						Page	;	3 of	5					
Project N	Number 107608						Date		2-12	2-19					
Depth	Description	Class	Blow Count	Recov.	Run/ Time	Sample Desig.	P _{BZ}	ID (ppi	m) s	Remarks/ Water Levels					
							DE			-					
-				/ 3						-					
32-	-		NA												
	-									-					
33-	SAND trace clay, light gray (10YR 7/1), damp									 33-35 Shelby Tube					
	to moist, fine to very fine grained									-					
34—	-		-/ -/	0.33/ 2		EB-11				 Samples collected					
			-			00 00				for ASTM D2216 –					
35-															
	-									-					
36-										-					
				12						-					
27	37- <u>-</u>														
37-															
38-	SAND some clay, light brownish gray (10YR	SC													
-	grained		00/							-					
39-			20/ 50/4	0.5/ 2		EB-11 38 - 40				Sample collected					
	-									for ASTM D4318 –					
40-															
17/21										-					
										-					
MS.G			NA	/ 3						-					
42-	-									-					
GPJ															
비 43-															
A LAN	to moist, loose, fine to medium grained	5P								-					
44 -			20/	0 58/2						-					
008 VIC			50/5	0.00/ 2		43 - 45				-					
1076										-					
										-					
	-									-					
ش 46 <u>-</u>	3														
TALL	1		NA	/3											
47-	1														
10 IN															
₩ <u>4</u> 0	4	1	I												
-	Permit Application 1522P	Atta-b-	ont E A	17			-								
ŀ	Permit Application 1522B	Attachn	ient 5-1	17			F	revision	u, Marc	n 20, 2022					

			Borir	ng Numbe	er EB	-11				
Project Na	ame City of Victoria Landfill Expansion						Page)	4 of	5
Project Nu	umber 107608						Date		2-12	-19
Depth	Description	Class	Blow Count	Recov.	Run/ Time	Sample . Desig.	P BZ	ID (ppi вн	m) s	Remarks/ Water Levels
49	SAND with interbedded clay, light brownish gray (10YR 6/2), damp to moist, fine to coarse grained, calcareous	SC	11/ 22/ 26	1.25/ 2		48 - 50		Ļ		
51			NA	/3						
53	SAND trace clay, light gray (10YR 7/1), damp to moist, loose, fine to medium grained, trace calcareous nodules and multicolor grains	SC	14/ 50/4	1/2		53 - 55				
56 57 57			NA	/3						
NDFILL.GPJ WILLIAMS.GDT 09 66 1 1			14/ 20/ 22	0.75/ 2		58 - 60				
BORING LOGS 107608 VICTORIA LA.			NA	/ 3						
ENVIRONMENTAL LOG E 62 64 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	light gray (10YR 7/2)		14/ 20/ 20	0.66/ 2		63 - 65				
Pe	ermit Application 1522B	Attachn	nent 5-1	18			F	Revision	0, Marc	URNS

					Borin	g Numbe	r EB	3-11								
Pr	roject	Name City of Victoria Landfill Expansion						Page		5 of	5					
Pr	roject	Number 107608						Date		2-12	2-19					
1	Depth	Description	Class	Blow Count	Recov.	Run/ Time	Sample . Desig.	Р вz	ID (ppi вн	m) s	. Remarks/ Water Levels					
	00	SAND trace clay, light gray (10YR 7/2), damp to moist, loose, fine to medium grained, trace calcareous nodules and multicolor grains	SC	13/						•						
	66-			21/ 25	1/2		65 - 67									
	67-	Bottom of Boring @ 67'									Piezometer -					
	68-															
	69-															
	70-															
	71–															
	72-															
	73–															
1/7/21	74-															
AMS.GDT 1	75-															
GPJ WILLI	76-															
kia landfill	77–															
608 VICTOF	78–															
IG LOGS 107	79–															
LOG BORIN	80-															
ONMENTAL	81–															
ENVIR	82_	1								♦ E	BURNS					
		Permit Application 1522B	Attachn	nent 5-1	19			F	Revision	0, Marc	MCDONNELL.					

	Project Na Citv	ame v of Victo	oria Landfill Exna	Insio	Project No. h 107608								Boring	g Numbe	FR	3-12	\mathbf{D}	
	Ground El	levation			Location	τv			Lati	tude	13440	010.68	Page			: 2	_	
	02.0 Air Monito	oring Equi	pment		victoria,	17			Lon	igitude	20415	70.4	Total	Footage	1 01	3		
	Drilling	Type	4-Gas Hole Size	3 Over	rburden Footage	Bedro	ock Foota	nde	No	o Of Sar	nnles	No. Core	Boxes	Der	37 oth to Wa	ater	Date Measur	red
	Rotary	Wash	3.75"	0.101	37	Douro	0	.go		0								<u> </u>
	Drilling Co	ompany	Braun Intertec		-		-		Dr	illers (s)	C. Ci	rews		_				
	Drilling Rig	a Ardo	co Model K 4x4						Ty	pe of		Split Sp	oon. S	helbv 1	Tube			
	Date 1-	-28-19		То	1-28-19				Fie	eld Obse	rver (s)	M. Pih	/ 	y				
													P	ID (pp	m)			
	Depth			Desci	ription		Class	Blo Cou	w unt	Recov.	Run/ Time	Sample Desig.	ΒZ	BH	s		Remarks/ Water Levels	
		CLA high	Y, black (10YR 2/1 plasticity, trace roc), dar otlets	mp to moist, sof	 t,	сн	-/ -/ -/	A , , ,	/ 3		3 - 5				Sp sar eve oth	lit Spoon npling perform ery 5 feet unles erwise noted	ed
VILLIAMS.GDT 11/7/21								NA	Ą	/ 3					STATE DAVID SC	OF 7	ARKER	
ENVIRONMENTAL LOG BORING LOGS 107608 VICTORIA LANDFILL.GPJ W	$ \begin{array}{c} 0 \\ - \\ 9 \\ - \\ 10 \\ - \\ 11 \\ - \\ 12 \\ - \\ 13 \\ - \\ 14 \\ - \\ 14 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$	CLA gray plast manų stain	Y some fine sand a (10YR 6/2), damp icity, trace calcare ganese oxide stain ing	and si to mo ous n ing, v	ilt, light brownisl oist, trace iodules and with mottled iron	h	CL	4/ 5/ 7	/ /	1.5/ 2		8 - 10				2931 ENSE O		
	Pe	ermit App	lication 1522B				Attachm	nent 5	5-12	20			R	Revision	0, Marc		NS DONNEL	-L.

			Borin	ng Numbe	r EB	-12									
Project N	ame City of Victoria Landfill Expansion						Page	9	2 of	3					
Project N	umber 107608						Date		1-28	-19					
							Р	PID (ppr	n)						
Depth	Description	Class	Blow Count	Recov.	Run/ Time	Sample Desig.	BZ	ВН	S	Remarks/ Water Levels					
_	CLAY some fine sand and silt, light brownish	CL	6/	1.58/ 2		_									
=	gray (10YR 6/2), damp to moist, trace plasticity, increasing calcareous nodules and		9			13 - 15				-					
15-	manganese oxide staining, with mottled iron														
=	stanning									-					
										-					
16															
=			NA	/ 3						-					
17-															
=										-					
										-					
										-					
			4/							_					
19-	1-inch calcareous gravel laver at 19 ft.		7/	1.33/ 2		18 - 20									
_															
20-						-									
									-						
=										-					
21-															
=			NA	/ 3						-					
22-															
=										-					
										-					
23										-					
			7/												
24—			11/	1.5/ 2		23 - 25									
			13							-					
25-										-					
										-					
										-					
26-															
			NA	/ 3						-					
27-										-					
										-					
										-					
28	SAND trace clay, light brownish gray (10YR	SC													
	6/2), damp to moist, loose, very line grained		Q/							-					
29-			10/	1/ 2		28 - 30									
			12							-					
30										-					
										-					
31 -			NA							-					
	1	I	I	I											
P	ermit Application 1522B	Attachn	nent 5-1	21			F	Revision	0, March	i 28, 2022					

							Boring	g Numbe	r EB	8-12
Project Na	me City of Victoria Landfill Expansion						Page		3 of	3
Project Nu	Imber 107608				-		Date		1-28	3-19
Depth	Description	Class	Blow Count	Recov.	Run/ Time	Sample Desig.	PI BZ	D (ррг вн	n) s	Remarks/ Water Levels
32			NA	/ 3						
34			17/ 11/ 10	0.5/ 2		33 - 35				
35	CLAY with sand, gray (10YR 6/1), damp to moist, very stiff, calcareous gravel seams	ĊL-	16/ 22/ 26	2/ 2		35 - 37				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Bottom of Boring @ 37'									Backfilled with Bentonite Slurry

Proje	ct Na	me of Victo	oria Landfill Evoa	ansio	Project No.								Boring	Numbe	FR	3-13	}
Grou	Ind Ele	evation			Location	T) (l	Latitu	ıde	13439	433.1	Page				•
Air M	63.1 Ionitor	tt. NA	VD88 pment		Victoria,	IX			Longi	itude	26407	93.75	Total F	ootage	1 of	r 6	
			4-Gas	s Ia						010	. 1	N 0	<u> </u>		88		D / M /
	rilling	Type	Hole Size	Over	rburden Footage	Bedro		age	NO.	Of San	npies	No. Core	e Boxes	Dep	th to Wa	ater	Date Measured
RU	tary v	wasn	3.75		00		0			4			•				
Drillir		mpany	Braun Intertec						Drill	ers (s) e of	U. U	rews					
Drillir	ng Rig		CO IVIODEI K 4X4						San	npler		Split Sp	oon, Sn	eiby i	upe		
Date	1-	15-19		То	1-15-19				Field	d Obse	rver (s)	M. Pin					
				_				Blo	w		Run/	Sample) (ppn	n)	4	Remarks/
Dep	pth	CLA	Y some silt verv d	Desci ark di	ription		Class CH	Cou	int F	Recov.	Time	Desig.	BZ	BH	S	Co	Water Levels
	Ξ	damp	o to moist, soft, hig	gh pla	isticity, trace		011									Sp	oon sampling –
1		10010						-/ -/		1/2		EB-13				not	ed
	Ξ							-				0-2				for	ASTM D2216 -
2	2																
	4	damp	to moist, stiff, hig	ark gi jh pla	sticity, trace											0-2	Sheiby Lube _
3	3	TOOLIE	915					7/ 7/	' ' 1	.17/2							-
								6				2 - 4					-
4	īĘ																-
	· =	CLA mois	Y some silt, gray (t, stiff, medium pla	10YR Isticity	t 5/1), damp to y, with calcareo	us	CL										-
5	<u> </u>	nodu	les					7/		25/2							-
	í t							6	'	.20/ 2		4 - 6					-
	,																-
20	<u> </u>	CLA gray	Y some silt and tra (10YR 6/2), damp	ice sa to mo	and, light brown oist, trace	ish	CL										-
11/7/1	, =	plast mang	icity, with calcareo ganese oxide stain	us no ning	odules, trace			5/		4 5 4 0							-
S.GDT				Ū				5/		1.5/2		6 - 8					
TIAM															E OF 7	I I	-
	° –													SID	*	A3	
ILL.GF	_							7/	,				ſ	DAVID	SCOTT B	ARKE	
AND G)							7/ 9	/ 1	.08/ 2		8 - 10		Jang	EOLOC	IY .	
ORIA I	Ξ														ICENSE	<u>e</u>	
)+	CLA	Y with sand, yellow	vish b	prown (10YR 5/6		CL_								AL Y G	EO	
10760	Ξ	damp mang	ganese nodules, w	ce pla /ith irc	asticity, trace on staining			6/	,								-
80 11	·							7/	'	2/2		10 - 12					
RING L	4																-
08 0 0 12	2-]								+								
AL LO	4							10									-
13 New 13	₃∃							17	"/ 1	.33/ 2		12 - 14					
VIRON									,								-
ä 14	-															<u> </u>	-
							• • •						_		N ^E		
	Pe	rmit App	lication 1522B				Attachm	nent 5	5-123				Re	vision (0, Marc	n 28,	2022

							Borin	ng Numbe	r EB	3-13
Project N	ame City of Victoria Landfill Expansion						Page	•	2 of	6
Project N	umber 107608						Date		1-15	5-19
Depth	Description	Class	Blow Count	Recov.	Run/ Time	Sample Desig.	P _{BZ}	ID (ppr	n) s	Remarks/ Water Levels
15	CLAY with sand, yellowish brown (10YR 5/6), damp to moist, stiff, trace plasticity, manganese oxide staining, with iron staining	CL	9/ 9/ 11	1.25/ 2		14 - 16				
			6/ 7/ 9	1.83/ 2		16 - 18				
19			7/ 10/ 13	1/ 2		18 - 20				
20	CLAY with sand and trace silt, very pale brown (10YR 7/3), damp to moist, stiff, manganese and iron oxide staining	CL	6/ 5/ 9	2/ 2		20 - 22				
23	CLAY with sand and gravel trace silt, very pale brown (10YR 7/3), damp to moist, with calcareous gravel	CL-	21/ 20/ 18	2/ 2		22 - 24				
			20/ 23/ 21	2/ 2		24 - 26				
			19/ 20/ 22	2/ 2		26 - 28				
29-			23/ 27/ 30	2/ 2		28 - 30				
31			10/							
P	ermit Application 1522B	Attachn	nent 5-1	24			F	Revision	0, Marc	SURNS

			Boring	g Numb	er EE	3-13				
Project Na	ame City of Victoria Landfill Expansion						Page		3 of	6
Project N	umber 107608						Date		1-15	5-19
Depth	Description	Class	Blow Count	Recov.	Run/ Time	Sample . Desig.	PI BZ	D (рр вн	om)	Remarks/ Water Levels
	CLAY with sand and gravel trace silt, very pale brown (10YR 7/3), damp to moist, very stiff, with calcareous gravel	CL	13/ 17	2/2		30 - 32				
32			13/ 17/ 24	1.83/ 2		EB-13 32 - 34				Sample collected
34										
35			20/ 22/ 28	2/ 2		34 - 36				
36— 	SAND some clay, light brownish gray (10YR 6/2), damp to moist	SC	22/ 27/	1.25/ 2		36 - 38				
38-	CLAY with sand, light brownish gray (10YR 6/2), damp to moist, soft, manganese oxide	- _{CL}								
39	staining		32/ 39/ 50/2	0.83/ 2		38 - 40				
	SAND trace silt, light brownish gray (10YR 6/2), damp to moist, fine grained	SM	27/ 37/ 50/4	2/ 2		EB-13 40 - 42				Sample collected
			20/							- - - - - -
			40/ 50/5	0.5/2		42 - 44				
45			20/ 24/ 50/5	0.66/ 2		44 - 46				
	SAND trace silt, light brownish gray (10YR 6/2), damp to moist, fine to medium grained, calcareous, manganese and iron nodules	SM	24/ 34/ 47	0.5/ 2		46 - 48				
48 -										-

Revision 0, March 28, 202

							Borin	ng Numbe	r EB	3-13
Project Na	ame City of Victoria Landfill Expansion						Page	9	4 of	6
Project N	umber 107608			1	1		Date		1-15	5-19
			Blow		Bun/	Sample	Р	PID (ppr	n)	Pemarks/
Depth	Description	Class	Count	Recov.	Time	Desig.	BZ	BH	S	Water Levels
_	SAND trace silt, light brownish gray (10YR	SM						•	•	-
_	calcareous, manganese and iron nodules		17/							-
49-			33/	0.66/2		48 - 50				
1 -			30							-
50-										_
	SAND some clay, light gray (10YR 7/1), damp	SC								
_			9/							
51-			13/	1.5/ 2		50 - 52				
=			15							
52-										
	SAND, light gray (10YR 7/1), damp to moist, fine to medium grained, iron, quartz and	SP								
=	manganese nodules		-							
53-			38/ 50/4	0.75/2		52 - 54				
-										-
54-										
=										
			7/							-
55			16/ 18	0.66/2		54 - 56				-
-										-
56-										
-										-
57			13/	0 83/ 2						_
			23	0.03/2		56 - 58				-
58-	SAND, gray (10YR 6/1), damp to moist, fine	SP								
	grained									
59-			31/ 39/	/2						
			19			58 - 60				-
										-
60	SAND, gray (10YR 6/1), damp to moist, fine to	SP								
	medium grained		201							-
61-			32/ 41/	0.5/ 2		60 - 62				
			47			00 - 02				-
										-
	multicolor grains									
			30/							-
63-			39/	0.66/ 2		62 - 64				
			35							
64										
		1								
65 -			9/							
	1	1								
-	11 A 11 / 17077	A	. = .	~~			_			
Pe	ermit Application 1522B	Attachn	nent 5-1	26			F	Revision	u, Marc	n 28, 2022

							Borin	g Num	ber E	B-13
Project N	ame City of Victoria Landfill Expansion						Page	•	5 0	of 6
Project N	umber 107608						Date		1-1	15-19
Depth	Description	Class	Blow Count	Recov.	Run/ Time	Sample . Desig.	Р вz	ID (рр вн	om)	Remarks/ Water Levels
-	SAND, gray (10YR 6/1), damp to moist, fine to medium grained, multicolor grains	SP	27/ 33	1.17/2		64 - 66		•	-	
66										
67			12/ 16/ 22	1/ 2		66 - 68				
68	SAND trace gravel, light gray (10YR 7/1), damp to moist, fine to medium grained, poorly graded, rounded to subangular, multicolor grains, calcareous	SP	20/	4.510						
69— 			26/ 27	1.5/ 2		68 - 70				
71-			10/ 12/ 14	0.33/ 2		70 - 72				
72										
73-			25/ 35/ 37	1.33/ 2		72 - 74				
74			7/	0.25/2						
			18	0.23/2		74 - 76				
			29/ 33/ 41	0.83/ 2		76 - 78				
78— 	SAND, gray (10YR 6/1), damp to moist, fine grained	SP	8/ 10/ 23	0.66/ 2		EB-13 78 - 80				Sample collected
80-	SAND with trace gravel grav (10YR 6/1)	- <u>-</u>								for ASTM D422
	damp to moist, fine to medium grained, some calcareous nodules	05	18/ 24/ 33	0.66/ 2		80 - 82				
<u>82 –</u>	1									-

Revision 0, March 28, 2022

								Borin	ig Numbe	er EB	3-13
Р	Project Na	ame City of Victoria Landfill Expansion						Page	•	6 of	6
Р	Project Nu	umber 107608						Date		1-15	5-19
	Depth	Description	Class	Blow Count	Recov.	Run/ Time	Sample . Desig.	P BZ	ID (ppi вн	m) s	Remarks/ Water Levels
	83 84 85 86 87 88	SAND with trace gravel, gray (10YR 6/1), damp to moist, fine to medium grained, some calcareous nodules	SP	15/ 17/ 23 5/ 7/ 16 8/ 12/ 21	1/ 2 1.33/ 2 1.66/ 2		82 - 84 84 - 86 86 - 88				
ENVIRONMENTAL LOG BORING LOGS 107608 VICTORIA LANDFILL.GPJ WILLIAMS.GDT 11/7/21	89 90 91 91 92 93 94 95 96 97 98 99 97 98 99 99 90	Bottom of Boring @ 88'								▲ F	Backfilled with Bentonite Slurry
	Pe	ermit Application 1522B	Attachn	nent 5-12	28			F	Revision	0, Marc	

	Project Name Project No. Boring Number EB-														3-14	1
ľ	Ground El	evation	VD88		Location	тх			La	ititude	13439	942.32 67 14	Page		۔ f ٦	
	Air Monito	ring Equi	pment 4-Gas		viotoria,				LO	ngilude	20101	07.11	Total F	ootage		
	Drilling	Туре	Hole Size	Over	burden Footage	Bedro	ock Foota	age	Ν	No. Of San	nples	No. Core	Boxes	Depth to W	ater	Date Measured
Ī	Rotary	Wash	3.75"		37		0			1						
	Drilling Co	mpany	Braun Intertec						D	Drillers (s)	C. Ci	rews				•
	Drilling Rig	g Ardo	co Model K 4x4						T S	Type of Sampler		Split Sp	oon			
	Date 1-	-16-19		То	1-16-19				F	ield Obse	rver (s)	M. Pih			_	
								Blo	wר		Run/	Sample	PI	D (ppm)		Remarks/
	Depth			Descr	ription		Class	Col	unt	Recov.	Time	Desig.	ΒZ	BH S		Water Levels
								NA	A	/ 3					Sp sa ev oth	IIt Spoon mpling performed _ ery 5 feet unless _ erwise noted
	3	CLA to mo	Y some silt, light gi bist, soft, high plas	0YR 7/1), damı trace roots		CH	4/ 3/ 4	/	2/ 2		EB-14 3 - 5			Sa for an	mples collected ASTM D2216 d D5084 -	
LIAMS.GDT 11/7/21								NA	A	/ 3						
VICTORIA LANDFILL.GPJ WILI	8	8 CLAY some sand and silt, light brownish (10YR 6/2), damp to moist, medium, high plasticity, mottled with reddish iron staini 9 10				ay — —	Сн	4/ 3/ 7	/	1.5/ 2		8 - 10		SINTE DAVID SC COMPANY OF COMPANY COMPANY OF COMPANY OF COMPANY COMPANY OF COMPANY OF COMPANY COMPANY OF COMPANY OF COMPANY COMPANY OF COMPANY OF COMPANY OF COMPANY OF COMPANY COMPANY OF COMPANY OF COMPANY OF COMPANY OF COMPANY COMPANY OF COMPANY OF COMPANY OF COMPANY OF COMPANY OF COMPANY COMPANY OF COMPANY OF COMPANY COMPANY OF COMPANY O	OF T COTT B COTT	ARKER
VVIRONMENTAL LOG BORING LOGS 107608								N/ 5/	A	/ 3						- - - - - - - - - - - - - - - - - - -
	 Pe	ermit App	lication 1522B				Attachn	nent (5-1	129			Re	evision 0, Marc	BUF MC M28,	NS DONNELL

Project Number 107608 Page 2 d 3 Desch Description User 107608 User 107608 User 107608 User 107608 PID (ppm) Permatis/ CLAV score and and still, lipht browninh gray (10YR 62/), damp to noist, medium, high plasticity, motified with redist iron staining CH 8 13-15 PID (ppm) Permatis/ Water Laveis 16 -				Borin	ng Nur	nber	EE	3-14				
Under 107608 Date 1-16-19 Depth Class Control Sample Reversion PID (ppm) Retrained of the same and and site light velocities in on saming 15 CLAY some fine aand and site light velocities in on saming CH 50 1.5 ¹ 13 - 15 Retrained of the same and and site light velocities in on saming Retrained of the same and and site light velocities in on saming Retrained of the same and and site light velocities in on saming Retrained of the same and and site light velocities in on saming Retrained of the same and and site light velocities in on saming Retrained of the same and and site light velocities in on saming Retrained of the same and and site light velocities in on saming Retrained of the same and and site light velocities in on saming Retrained of the same and and site light velocities in on saming Retrained of the same and and site light velocities in on same and and site light velocities in one	Project Na	ame City of Victoria Landfill Expansion						Page	;		2 of	3
Depth Description Class Bow Count Runce Reaction Sample Bescription PUID (ppm) Remarks' Bit is 2 Bit is 2	Project Nu	umber 107608		-			<u> </u>	Date			1-1	6-19
CLAY some and and sit. light years record for Sol, damp to most, medium, hold plaulicity, motified with readsh iron staining 16- 16- 16- 17- 16- 16- 16- 17- 18- CLAY some fine sand and sit. light years record from sand and sit. light years to day, damp to most, siff, menganese nodules and manganese oxide 20- 21- 23- 24- 24- 25- 26- 26- 26- 26- 26- 26- 27- 26- 27- 26- 27- 26- 27- 26- 27- 26- 26- 27- 26- 26- 26- 27- 26- 26- 26- 27- 26- 27- 26- 27- 27- 28- 28- 28- 28- 28- 28- 28- 28	Depth	Description	Class	Blow Count	Recov.	Run/ Time	Sample. Desig.	Р вz	ID (вн	ppm -	n) s	Remarks/ Water Levels
15 Image: stand and sit. light yellowish brown (10/R 40/L and sit. light yellowish brown (10/R 40/L and sit. light yellowish brown (10/R 40/L and sit. light yellowish metagenese oxide saming, with motive and metagenese oxide saming. CL Image: stand and sit. light yellowish metagenese oxide saming. 19 CL/V some fine sand and sit. light yellowish metagenese oxide saming. CL Image: stand and sit. light yellowish metagenese oxide saming. 20 Image: stand and sit. light yellowish metagenese oxide saming. CL Image: stand and sit. light yellowish metagenese oxide saming. 21 Image: stand and sit. light yellowish metagenese oxide saming. Image: stand and sit. light yellowish metagenese oxide saming. Image: stand and sit. light yellowish metagenese oxide saming. 21 Image: stand and sit. light yellowish metagenese oxide saming. Image: stand and sit. light yellowish metagenese oxide saming. Image: stand and sit. light yellowish metagenese oxide saming. 22 Image: stand and sit. light yellowish metagenese oxide saming. Image: stand and sit. light yellowish metagenese oxide saming. Image: stand and sit. light yellowish metagenese oxide saming. 23 Very stiff Image: stand and sit. light yellowish metagenese oxide saming. Image: stand and sit. light yellowish metagenese oxide saming. Image: stand and sit. light yellowish metagenese oxide saming. 24 Very stiff Image: stand and sit. light yellowish metagenese oxide saming. Image: stand and saming. Image: stand and saming.		CLAY some sand and silt, light brownish gray (10YR 6/2), damp to moist, medium, high plasticity, mottled with reddish iron staining	СН	5/ 6	1.5/ 2		13 - 15		•	·		-
10 10 NA / 3 17 18 CLAY some fine sand and sit. light yellowish medium plashichy, trace calcaroous, for and medium plashichy, trace calcaroous, for and summarian seconde staining CL 19 reductive plashichy, trace calcaroous, for and medium plashichy, trace calcaroous, for any fo	15	plasticity, motica with readism for stanling										
16 NA / 3 17	¹⁰ ±											
16 NA / 3 17	4											-
17 NA /3 Image: CLAY some fine sand and sill, light yellowish motion (10YR 64), damp to moist, stiff, medium plasticity, trace calcareous, iron and mediumese oxide adarbage endulise and mangemees oxide adarbage endulise exists CL 6/ 18 - 20 20 Image: Rest of the sand mangemees oxide adarbage exists NA /3 Image: Rest of the sand mangemees oxide adarbage exists 20 Image: Rest of the sand mangemees oxide adarbage exists Image: Rest of the sand mangemees oxide adarbage exists Image: Rest of the sand mangemees oxide adarbage exists 21 Image: Rest of the sand and sill, light yellowish of the sand mangemees oxide adarbage exists Image: Rest of the sand addition of the sand addi	16											
17 Image: CLAY some fine said and sill, light yellowish medium plasticity, trace calcareous, iffice and manganese oxide staining, with motiled iron staining CL 6'//2 18 - 20 19 and anganese notice and and sill, light yellowish medium plasticity, trace calcareous, iffice and manganese oxide staining, with motiled iron staining CL 6'//2 18 - 20 20 Image: source and sill, light yellowish medium plasticity, trace calcareous, iffice and manganese oxide staining. NA //3 18 - 20 21 Image: source and sill, light yellowish staining NA //3 Image: source and sill, light yellowish staining 21 Image: source and sill, light yellowish staining NA //3 Image: source and sill, light yellowish staining 21 Image: source and sill, light yellowish staining NA //3 Image: source and sill, light yellowish staining 22 Image: source and sill, light yellowish staining Image: source and sill, light yellowish staining Image: source and sill, light yellowish staining 24 Image: source and sill, light yellowish staining Image: source and source	4			NA	/ 3							-
18 CLAY some fine sand and silt, light yellowish brown (10YR 64), damp to moist, stiff, marganese notices and manganese notice staining staining, with motified iron staining CL 6/7 1.66/2 18 - 20 20 18 1.66/2 18 - 20 21 NA /.3 1 22 NA /.3 1 23 very stiff 8/7 1.66/2 18 - 20 24 NA /.3 1 25 NA /.3 1 26 NA /.3 1 27 Very stiff 8/7 1.83/2 23 - 25 26 NA /.3 1 27 SAND trace clay, light gray (10/R 7/1), damp SC 10/12/2 28 - 30 28 SAND trace clay, light gray (10/R 7/1), damp SC 10/12/2 28 - 30 29 NA /.3 1 2/2 28 - 30	17											
18 CLAY some fire and and all, light velocities 19 recorn (10/R 64), damp to most, stiff, manganese nodules and manganese oxide staining, with motifed ion staining 20 18 - 20 21 NA 23 very stiff 24 NA 25 NA 26 NA 27 NA 28 SAND trace clare used will graded, calcareous 29 SAND trace clay, light gray (10/R 7/1), damp to most, medium density, fine grained, well graded, calcareous 30 NA	Ξ											-
CLAY some fine sand and still, light yellowish medium plasticity, trace calcareous, iron and magnese oxide staining, with motited iron staining CL	18-											-
19 medium plasticity, trace clacerous, iron and magnese notice and magnese oxide staining, with mottled iron staining 6/7 1.66/2 18 - 20 20 NA /3 1 21 NA /3 1 22 NA /3 1 23 very stiff 8/7 1.83/2 23 - 25 24 NA /3 1 25 NA /3 1 26 NA /3 1 27 NA /3 1 28 SAND trace clay, light gray (10/YR 7/1), damp to most, medium density, line grained, well graded, catcareous SC 10/12/14 2/2 30 NA NA 1 28 - 30	¹⁰ ±	CLAY some fine sand and silt, light yellowish brown (10YR 6/4), damp to moist, stiff.	CL									
19 staining, with motiled iron staining 7/ 1.66/2 18 - 20 20 NA /3 1 21 NA /3 1 22 NA /3 1 23 very stiff 8/ 1.83/2 23 - 25 26 NA /3 1 24 NA /3 1 25 NA /3 1 26 NA /3 1 27 NA /3 1 28 SAND trace clay, light gray (10/R 7/1), damp SC NA 10/ 12/ 2/ 28 - 30 30 NA /3 1	4	medium plasticity, trace calcareous, iron and manganese podules and manganese oxide		6/								-
20 21 22 23 very stiff 24 	19-	staining, with mottled iron staining		7/ 8	1.66/ 2		18 - 20					
20 21 22 23 24 24 24 5 5 5 5 5 5 5 5 5 5 5 5 5	4											-
21 22 23 24 24 25 25 26 27 26 27 28 SAND trace clay, light gray (10YR 7/1), damp 30 30 31 31 31 31 31 31 31 31 31 31	20-											
21 very stiff 23 very stiff 24 8//6//10 25 8//6//10 26 8//6//10 27 8 28 SAND trace day, light gray (10YR 7/1), damp graded, calcareous 29 SAND trace day, light gray (10YR 7/1), damp graded, calcareous 30 NA 31 NA	3											-
21 very stiff 23 very stiff 24 NA 25 Image: SaND trace day, light gray (10YR 7/1), damp to moist, medium density, fine grained, well graded, calcareous 29 SAND trace day, light gray (10YR 7/1), damp to moist, medium density, fine grained, well graded, calcareous 30 NA	21											-
22 very stiff 23 very stiff 24 8/ 25 8/ 26 8/ 27 8/ 28 SAND trace clay, light gray (10YR 7/1), damp to moist, medium density, fine grained, well graded, calcareous 29 50 30 NA	<u> </u>				10							
22 very stiff 23 very stiff 24 8/ 6/ 1.83/2 25 8/ 10 26 8/ 10 27 8/ 10 28 SAND trace clay, light gray (10YR 7/1), damp to moist, medium density, fine grained, well graded, calcareous 29 10/ 12/ 14 30 NA	4			NA	/3							-
23 very stiff 24 8/ 6/ 10 25 8/ 10 26 NA 27 NA 28 SAND trace clay, light gray (10YR 7/1), damp to moist, medium density, fine grained, well graded, calcareous SC 10 10/ 12/ 14 29 NA 30 NA	22											
23 very stiff 24 8/ 6/ 10 25 8/ 10 26 NA 27 NA 28 SAND trace clay, light gray (10YR 7/1), damp graded, calcareous 29 SC 30 10/ 12/ 14 31 NA	4											
24 8/ 6/ 10 1.83/2 23 - 25 25 8/ 10 1.83/2 23 - 25 26 NA / 3 1 27 8 NA / 3 1 28 SAND trace clay, light gray (10YR 7/1), damp to moist, medium density, fine grained, well graded, calcareous SC 10/ 12/ 14 2/2 28 - 30 30 NA NA 1 1	23-	verv stiff										
24 8/ 6/ 10 1.83/2 23 - 25 25	Ξ											
25 25 26 27 28 SAND trace clay, light gray (10YR 7/1), damp to moist, medium density, fine grained, well graded, calcareous 30 31 NA NA NA NA NA NA NA NA NA NA	24			8/ 6/	1 83/ 2							
25 26 27 28 SAND trace clay, light gray (10YR 7/1), damp to moist, medium density, fine grained, well graded, calcareous 30 31 NA NA NA NA NA NA NA NA NA NA				10			23 - 25					-
25 26 NA / 3 26 SAND trace clay, light gray (10YR 7/1), damp to moist, medium density, fine grained, well graded, calcareous SC 29 10/12/14 2/ 2 30 NA NA												-
26 27 28 SAND trace clay, light gray (10YR 7/1), damp to moist, medium density, fine grained, well graded, calcareous 30 31 NA / 3 NA / 3 NA	25											
26 27 28 SAND trace clay, light gray (10YR 7/1), damp to moist, medium density, fine grained, well graded, calcareous 30 31 NA NA NA NA NA NA NA NA NA NA	3											-
27 SAND trace clay, light gray (10YR 7/1), damp to moist, medium density, fine grained, well graded, calcareous SC 10/12/14 2/2 28 - 30 30 NA NA NA 10/14 10/14 2/2 28 - 30	26-											
27 28 SAND trace clay, light gray (10YR 7/1), damp to moist, medium density, fine grained, well graded, calcareous 29 30 31 NA NA	4			NA	/ 3							
28 - SAND trace clay, light gray (10YR 7/1), damp to moist, medium density, fine grained, well graded, calcareous 29	27											
28 - SAND trace clay, light gray (10YR 7/1), damp to moist, medium density, fine grained, well graded, calcareous 29												-
28 SAND trace clay, light gray (10YR 7/1), damp to moist, medium density, fine grained, well graded, calcareous SC 10/12/12/2 28 - 30 29 30 NA NA 10/12/14/2 28 - 30												-
$\begin{array}{c c} & & & & & & & & & & & & & & & & & & &$	28-	SAND trace clay, light gray (10YR 7/1), damp	sc									
29- 30- 31- 31- 2/ 2/2 28-30 NA NA 2/ 2 28-30	-	to moist, medium density, fine grained, well graded, calcareous		10/								-
30	29-			12/	2/2		28 - 30					
30	3			14								
31 - NA	30-											
	~~ <u>-</u>											-
	31 -											-

							Borin	ng Numbe	er EB	8-14
Project N	ame City of Victoria Landfill Expansion						Page	•	3 of	3
Project N	umber 107608						Date		1-16	5-19 I
Depth	Description	Class	Blow Count	Recov.	Run/ Time	Sample Desig.	Р вz	ID (ррі вн	m) s	Remarks/ Water Levels
32	SAND trace silt, light gray (10YR 7/1), damp to moist, loose, fine grained	SM	NA 13/ 15/ 20 28/ 35/ 42	/ 3 1.33/ 2 0.66/ 2		33 - 35 35 - 37				
37	Bottom of Boring @ 37'									Backfilled with Bentonite Slurry
Pe	ermit Application 1522B		F	Revision	0, Marc					

Proje	ct Name	Victor	ia I andfill Expa	nsio	Project No. 107608								Boring	g Numbe	FR	3-15	5
Grou	nd Elevat	ion			Location	TV			Latitu	ude	13440	350.7	Page			 	-
Air M	o3.5 π. onitoring	Equip	ment		victoria,	IX			Long	jitude	20401	50.15	Total	Footage	1 01	া	
		_	4-Gas	Over	burden Footage	Bodro	ock Epota	nde	No	Of Sar	nnles	No. Cor	Boyes	Der	37	otor	Date Measured
Rot	arv Wa	sh	3 75"	Oven	.37	Deuro	0	iye	NO	01 Sai	iipies	110. 001	-	Dep			
Drillin			Braun Intertec		01		<u> </u>		Dril	lers (s)		~ew/s					
Drillin		Ardeo	n Model K 4x4						Тур	be of	0.01	Snlit Sn	noon				
Date	1-16-	19		То	1-16-19				Sar	npler Id Obse	rver (s)	M Pih	h				
Date		10		10	1-10-10								 DI		m)		
Dep	oth			Descr	iption		Class	Blo Cou	w unt	Recov.	Run/ Time	Sample Desig.	BZ	вн	li)	-	Remarks/ Water Levels
	_				····								DZ	DIT	0	Sp	lit Spoon
	-															eve	ery 5 feet unless
1																	
	3							NA	A	/ 3							
2	·																-
	4																
3			some silt, black (<u>2/1), damp to</u>		- <u>-</u>										-
		moist, calcar	medium, high pla eous nodules, roo	sticity tlets	y, trace				,								
4								4/ 5/	/	2/2		3 - 5					-
	4							5									
5	;																-
	Ξ																
6	;																-
7/21	-							NA	Ą	/ 3							
¹¹	·														N	E OF	TEX
MS.GD	3													/			- As
NILLIAI 8	<u> </u>	<u></u>													DAVID	SCOTT	BARKER
GPJ V	4	ULAY (10YR	some fine sand a R 7/2), damp to mo	na gr bist, v	ery stiff, trace		CL								Part All	EOLE	GY 15
DFILL.		plastic	city, calcareous					10 10)/	1.66/ 2					SSION A	CENS	LED SE
A LAN	4							10	Ő			8 - 10					
10 10																	-
808 VIG																	
S 1076																	_
									^	12							
SORING										13							
12 12																	-
NTAL I	4																
WNO 13		CLAY grav (with some fine sa 10YR 7/2), damp	and and to mo	nd gravel, light bist, very stiff.		CL										-
		trace	plasticity, mottled	staini	ing			7/	/								
												. <u> </u>			N E	BUR	NS
	Permit	Appli	cation 1522B				Attachm	nent S	5-132	2			R	evision	0, Marc	MC h 28,	

							Borin	ng Numbe	er EB	8-15
Project Na	ame City of Victoria Landfill Expansion						Page	9	2 of	3
Project Nu	umber 107608						Date		1-16	5-19 I
			Blow		Bun/	Sampla	Ρ	'ID (pp	m)	Bomarka/
Depth	Description	Class	Count	Recov.	Time	Desig.	ΒZ	BH	S	Water Levels
_	CLAY with some fine sand and gravel, light	CL	8/ 10	1.33/ 2		10 15		•		-
-	trace plasticity, mottled staining		10			13 - 15				-
15-										
-										-
										-
										-
-			NA	/ 3						-
17-										
19										
	CLAY with sand and silt, pale brown (10YR 6/3) damp to moist medium trace plasticity	CL								-
_	trace calcareous and manganese nodules,		12/							-
19-	mottled iron staining		14/	1/ 2		18 - 20				
			10							
20-										
21-										
			NA	/ 3						
22-										
23-	CLAY with sand and silt, pale brown (10YR	- CL								
	6/3), damp to moist, medium, trace plasticity, trace calcareous and manganese nodules.									-
24-	mottled iron staining		9/ 14/	1.66/ 2		00 05				
			13			23 - 25				-
										-
25										
										-
26										
			ΝΔ	13						
				/ 0						
2/										
										-
28-	SAND some silt and trace clay, light gray	<u></u>								
	(10YR 7/2), damp to moist, medium, fine									-
	grained		24/	1/0						-
29			50	1/ 2		28 - 30				-
										-
30-						$\left - \right $				
			NA							
31										_
									🔷 E	BURNS
Pe	ermit Application 1522B	Attachn	nent 5-1	33			F	Revision	0. Marc	
				-					,	

							Borin	ig Numbe	er EB	8-15			
Project N	ame City of Victoria Landfill Expansion						Page	;	3 of	3			
Project N	umber 107608						Date		1-16	5-19			
Depth	Description	Class	Blow Count	Recov.	Run/ Time	Sample Desig.	Р вz	ID (ppi вн	m) s	Remarks/ Water Levels			
Depth Description Class Bow Run Sample FLU (UPII) Remarkal 32 - </td													
47													
P	ermit Application 1522B		F	Revision	0, Marc	BURNS MCDONNELL.							

Project Name City of	e f Victoria Landfill Expa	Project No. ansion 107608						Boring	Numbe	FR	-16	
Ground Eleva	ation	Location	TV		Latitude	13439	284.65	Page		<u> </u>		
64.0 ft Air Monitorin	g Equipment	Victoria,	IĂ		Longitude	20395	10.19	Total F	ootage	1 01	6	
Drilling Tu	4-Ga	S	Podrook Foot		No. Of Sor	malaa	No. Corr	Povos	Don	87	tor	Data Maggurad
Botary W	ash 3.75"	87		age	10. 01 5a	npies	NO. COR		Dep		ller	
		07	0		Drillora (a)							
Drilling Big	Ardeo Model K 4x4				Type of	0.0	Split Sp	oon				
		та 1 14 10			Sampler							
Date	+-13	10 1-14-13			Field Obse			" DIF) (nnr	2)		
Denth		Description	Class	Blo	W Int Recov	Run/	Sample) (ppi	II)		Remarks/ Water Levels
		Description	01033			TIME	Desig.	БД	вн	3	Spli	t Spoon _
											san eve	npling performed – ry 5 feet unless –
1											othe	erwise noted
				NA	A / 3							-
2												
												-
3	CLAY some silt, dark c	 aray (10YR 4/1), dam	р <u>––––</u> ––	-								
	to moist, soft, high plas	sticity										-
4				5/	2/2		3 - 5					
				4								-
5												
												-
6												
/21				NA	A / 3							-
										TATE	DF TE	
AS.GD										7 2		× =
										AVID SCO	OTT BA	RKER
	CLAY with sand some 7/2), damp to moist, ve	silt, light gray (10YR ery stiff, medium	CL						ROLEE	04/12	231	-
	plasticity, calcareous			10	/					SIONAL	NSED GEC	-
				12	2		8 - 10					-
												-
												-
S 1076												-
												-
				N/	A /3							-
												-
	SAND trace silt, light y 6/4), dry to damp fine	ellowish brown (10YF	R SM									-
	o, ij, aly to dump, into	3.5.1104, 5410410000		12	/							
ш 			I							♦ B	UR	NS
Perm	nit Application 1522B		Attachr	ment 5	5-135			Re	vision	0, March		ONNELL
			Borin	ig Num	ber	EB	-16					
------------	--	-------	---------------	---------	--------------	------------------	---------	-------	-----	------	----------------------------	
Project Na	me City of Victoria Landfill Expansion		Page	•		2 of	6					
Project Nu	imber 107608						Date			1-14	-19	
Depth	Description	Class	Blow Count	Recov.	Run/ Time	Sample Desig.	P BZ	ID (р	pm)	S	. Remarks/ Water Levels	
	SAND trace silt, light yellowish brown (10YR	SM	12/	2/2		10 15			-		-	
	6/4), dry to damp, fine grained, calcareous					13 - 15					-	
15-											_	
											-	
16-											-	
			ΝΑ	/3							-	
											-	
											-	
											-	
	SAND trace silt, light brownish gray (10YR	SM										
=	6/2), damp to moist		10/								-	
19-			12/	1.5/ 2		18 - 20						
			16								-	
20												
											-	
											-	
											-	
			NA	/ 3							-	
22-												
											-	
23-												
											-	
24-			16/ 25/	0 66/ 2							-	
			26	0.00, 2		23 - 25					-	
											-	
											-	
26—												
			NA	/ 3							-	
27—											-	
											-	
											-	
										[-	
			8/								-	
29-			10/ 10	1.66/ 2		28 - 30				[-	
i										[-	
30-										[
			NA								-	
31 -											-	

			Boring Number EB-16 Page 3 of 6							
Project N	ame City of Victoria Landfill Expansion						Page	•	3 of	6
Project N								ID (ppr	n)	
Depth	Description	Class	Blow Count	Recov.	Run/ Time	Sample Desig.	BZ	вн	n) s	Remarks/ Water Levels
32-	SAND trace silt damp to moist loose fine		NA	/ 3				<u> </u>		- - - - - - - - - -
34	grained		16/ 23/ 29	0.83/ 2		33 - 35				
36			NA	/ 3						
38— 39— 40—	SAND trace silt, light brownish gray (10YR 6/2), damp to moist, loose, fine grained, some iron staining	SM	32/ 50/3	0.66/ 2		EB-16 38 - 40				Sample collected for ASTM D422
			NA	/3						
			35/ 50/5	0.66/ 2		43 - 45				
46			NA	/ 3						
P	ermit Application 1522B	Attachn	nent 5-1	37		,	F	Revision	0, Marc	BURNS MSDONNELL

				Borin	g Numt	ber EE	3-16			
Project Na	ame City of Victoria Landfill Expansion						Page		4 of	í 6
Project Nu	umber 107608						Date		1-14	4-19
Depth	Description	Class	Blow Count	Recov.	Run/ Time	Sample Desig.	Р вz	ID (pp вн	om)	_ Remarks/ Water Levels
49	SAND trace clay, light brownish gray (10YR 6/2), damp to moist, fine to coarse grained, calcareous	SC	25/ 29/ 50/5	1.66/ 2		48 - 50			_	
51			NA	/ 3						
53	SAND trace silt and gravel, light brownish gray (10YR 6/2), damp to moist, fine grained, calcareous and iron nodules, increasing gravel content with depth	SM	35/ 36/ 30	1.83/ 2		53 - 55				
55			NA	/ 3						
	SAND trace gravel, light gray (10YR 7/1), damp to moist, loose, calcareous with iron and manganese nodules	 SP	15/ 19/ 17	1.5/ 2		58 - 60				
61			NA	/ 3						
	SAND some silt, light gray (10YR 7/1), damp to moist, dense, fine grained	 SM	7/ 8/ 10	2/ 2		63 - 65				

Revision 0, March 28, 202

							Borin	ng Numbe	er EB	3-16
Project N	ame City of Victoria Landfill Expansion	Page	9	5 of	6					
Project N	umber 107608						Date		1-14	1-19
Depth	Description	Class	Blow Count	Recov.	Run/ Time	Sample. Desig.	Р вz	ID (ppi вн	m) s	Remarks/ Water Levels
Depth - 0 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - <td>SAND trace silt, light yellowish brown (10YR 6/4), damp to moist, dense, fine grained, calcareous</td> <td>Class</td> <td>Blow Count NA 12/ 21/ 20 NA 20/ 21/ 20 NA</td> <td>Recov. / 3 1.5/ 2 / 3 1.33/ 2 / 3</td> <td>Run/ Time</td> <td>Sample Desig. 68 - 70 73 - 75 73 - 75</td> <td>BZ</td> <td>ID (ppi</td> <td>m) s</td> <td>Remarks/ Water Levels</td>	SAND trace silt, light yellowish brown (10YR 6/4), damp to moist, dense, fine grained, calcareous	Class	Blow Count NA 12/ 21/ 20 NA 20/ 21/ 20 NA	Recov. / 3 1.5/ 2 / 3 1.33/ 2 / 3	Run/ Time	Sample Desig. 68 - 70 73 - 75 73 - 75	BZ	ID (ppi	m) s	Remarks/ Water Levels
ш <u> 92</u>	ermit Application 1522B	Attachn	1 1ent 5-1	39		<u> </u>	F	Revision		BURNS
E.	onnic Application 1022D	Audonn	10111 0-1				1	10131011	o, mait	

			Boring Number EB-16							
Project Na	ame City of Victoria Landfill Expansion						Page	;	6 of	6
Project Nu	umber 107608	r				· · · ·	Date		1-14	l-19
Depth	Description	Class	Blow Count	Recov.	Run/ Time	Sample Desig.	P _{BZ}	ID (ppr вн	n) s	Remarks/ Water Levels
83	SAND trace silt light gray (10VR 7/1) damp		NA					Į	<u> </u>	- - - -
84	to moist, fine grained		8/ 9/ 15	0.5/ 2		83 - 85				- - - - - - -
85	SAND trace gravel, light gray (10YR 7/1), damp to moist, medium to coarse grained, calcareous, quartz grains, subangular to rounded	 SP	30/ 35/ 23	0.66/ 2		85 - 87				
$\begin{array}{c} 87 \\ 88 \\ 90 \\ 91 \\ 92 \\ 93 \\ 94 \\ 95 \\ 96 \\ 97 \\ 98 \\ 97 \\ 97$	Bottom of Boring @ 87'									Backfilled with Bentonite Slurry
99 -									• -	-
Pe	ermit Application 1522B	Attachn	nent 5-1	40			F	Revision	0, Marc	

Drilling Log

Project Name Project No. Boring Number EB-17												-17	
Groun	d Elevatio		Location			L	atitude	13438	595.87	Page			
6 Air Mo	2.1 ft. 1	NAVD88 auipment	Victoria,	ТХ		L	ongitude	26399	99.39	Total F	ootage	1 of	6
		4-Gas										87	
Dril	ling Type	Hole Size	Overburden Footage	Bedroc	k Foota	ige	No. Of Sar	nples	No. Core	e Boxes	Dep	oth to Wa	ter Date Measured
Rota	iry Wasl	h 3.75"	87		0		4			-			
Drilling) Compan	y Braun Intertec					Drillers (s)	C. C	rews				
Drilling	Rig A	vrdco Model K 4x4					Type of Sampler		Split Sp	oon, Sh	elby T	Гube	
Date	2-15-1	9	то 2-15-19				Field Obse	erver (s)	M. Pih	ıl			
										PIC) (ppi	m)	
Dept	h		Description		Class	Blov	v nt Recov	Run/ Time	Sample Desig	B7		, s	Remarks/ Water Levels
	_		Beschption		01000	ooui	1100001	Time	Desig.	DZ	вп	3	Split Spoon _
	_												sampling performed – everv 5 feet unless –
1-	_												otherwise noted
	-					NA	/3						-
2	-												_
	_												-
	_												-
3-		LAY with fine sand, gr	ayish brown (10YR		CH							TE	OF TE
		(2), damp to moist, sol alcareous nodules, ma	t, high plasticity, trac inganese oxide	e		2/						SIALS	
4-	st	aining				3/	1/ 2		3 - 5		ß	DAVID S	
	Ξ					3					N	Jull	OTTBARKER
5-	_										13	P 04/	2931 - 5/2m (2) -
Ĭ	4											SIONAL	ENSEDSC -
	-											4	-
- 6-	-												-
11/7/2	3					NA	/ 3						
<u>اما</u> 7-	-												
AMS.0													-
8-	_						_						_
GPJ	3												-
						3/ 4/	2/2		EB-17				_
TAN						6	2, 2		8 - 10				Sample collected _ for ASTM D422 -
ORIA	1												-
ତ୍ରୁ 10- ଆ	th	in layer of calcareous	subangular gravel a	t									-
0260	\exists	U II.											_
ଞ୍ଚି 11-													
NGL	_					NA	/ 3						-
R 8 12-													
FOG	4												-
	<u> </u>												_
		AND, light yellowish b amp to moist. loose. fi	rown (10YR 6/4), ne to very fine graine	ed S	SP-SM								-
צֿו אַ 1∆		,,	, <u>3</u> . "			8/							
ш 													,

							Borin	ıg Nun	nber	EE	3-17
Project Na	me City of Victoria Landfill Expansion						Page	;		2 of	6
Project Nu	mber 107608						Date			2-15	5-19
Depth	Description	Class	Blow Count	Recov.	Run/ Time	Sample, Desig.	P BZ	ID (р вн	pm) s	Remarks/ Water Levels
	SAND, light yellowish brown (10YR 6/4), damp to moist, loose, fine to very fine grained	SP-SM	12/ 11	0.83/2		13 - 15					-
15-											
16											
			NA	/3							-
18	SAND vellowish brown (10YR 5/8) damp to	- <u>-</u>									_
]	moist, fine grained, trace calcareous gravel, with iron staining		16/								-
19			24/ 25	0.66/ 2		EB-17 18 - 20					Sample collected
21-											
			NA	/ 3							
22											
23	CLAY with fine sand, light gray (10YR 7/1), damp to moist, stiff, trace calcareous nodules.	- <u>c</u>									
	some manganese nodules and manganese oxide staining		6/ 6/	2/2		EB-17					-
			9	2/2		23 - 25					Samples collected _ for ASTM D422 and -
25											
]											-
26											
			NA	/ 3							
28											
											28-30 Shelby Tube
29-			-/ -/	1.33/ 2		28 - 30					
			-								
30-											
31			NA								-

							Borin	ng Numb	er EE	3-17	
Project N	lame City of Victoria Landfill Expansion						Page)	3 of	6	
Project N	Boing Number EB-17 ext Number 107608 Page 3 of 6 goth Description Class Borng Number PID (ppm) goth Description Class Borng Number PID (ppm) 2 SAND, light brownish gray (10YR 6/2), diampoint to most, loose, very fine to fine grained SP-SM //3 B </td										
Depth	Description	Class	Blow Count	Recov.	Run/ Time	Sample. Desig.	P BZ	ID (pp вн	om) s	Remarks/ Water Levels	
32- 33- 34- 35- 36-	SAND, light brownish gray (10YR 6/2), damp to moist, loose, very fine to fine grained	SP-SM	9/ 18/ 22	/3		33 - 35					
37 38 39 40 41	SAND trace clay, light brownish gray (10YR 6/2), damp to moist, loose, very fine to fine grained	- <u>-</u>	15/ 20/ 29	0.58/2		38 - 40					
A LANDFILL.GPJ WILLIAMS.G 43 - 1 - 43 - 1 43 - 1 43 - 1	SAND, light brownish gray (10YR 6/2), damp to moist, loose, very fine to fine grained,	SP-SM	NA	/ 3						- - - - - - - - - - - - - - - - - - -	
1 44 44 44 44 44 44 44 44 44 44 44 44 44	poorly graded		25/ 50/4	0.66/ 2		43 - 45					
	ermit Application 1522B	Attachm	NA	43			F	Revision	E 0, Marc	BURNS MSDONNELL.	

							Borin	g Nun	nber	EE	3-17
Project Na	ame City of Victoria Landfill Expansion						Page	•		4 of	6
Project Nu	umber 107608						Date			2-15	5-19
Depth	Description	Class	Blow Count	Recov.	Run/ Time	Sample Desig.	P _{BZ}	ID (р вн	opm	i) s	Remarks/ Water Levels
-	CLAY with fine sand, pale brown (10YR 6/3), damp to moist, trace iron staining	CL	0/					•			
49			14/ 20	1/ 2		48 - 50					
50-											
51-											-
52-			NA	/ 3							
- - -											
	SAND trace sand, gray (10YR 6/1), damp to moist, fine to medium grained	SC	9/								
54			13/ 15	0.83/2		53 - 55					
55											
56											-
57-			NA	/3							
58											
			11/								
59			15/ 20	0.5/2		58 - 60					
60											
61											
62			NA	/3							
	SAND come silt light grov (10VD 7/1) down										
	to moist, loose, very fine to fine grained	SIVI	11/	0.0010							
			13/	0.00/2		63 - 65					
00		1	1	I		1					

			Borin	g Numb	er EE	3-17				
Project Na	ame City of Victoria Landfill Expansion						Page	•	5 of	6
Project Nu	umber 107608						Date		2-15	5-19
			Diave		Dum/	Comula	Р	ID (pp	m)	Demerike/
Depth	Description	Class	Count	Recov.	Time	Desig.	ΒZ	BH	S	Water Levels
_									•	-
_										-
66										
			NA	/3						-
67-										
										-
68	SAND trace clay, light brownish gray (10YR	-sc								
-	6/2), damp to moist, fine grained		10/							-
69-			12/	0.75/ 2		68 - 70				
			15							-
70										-
=										-
71-										
=			NA	/ 3						-
72-										
-										
										-
/3	CLAY with fine sand, light brownish gray	CL_								-
_	calcareous and manganese nodules, with		8/							-
74—	mottled iron staining		9/	2/2		73 - 75				_
			12							
75-										
										-
76										
			NA	/ 3						-
77—										
										-
70										-
	SAND trace clay, light yellowish brown (10YR	sc								-
	subrounded gravel, with iron staining		10/							-
79-			12/	0.5/ 2		78 - 80				
80-										
										-
										-
81			NA							
				/3						-
82 -										_

				Borin	ng Numb	er EB	8-17				
	Project Na	ame City of Victoria Landfill Expansion						Page	9	6 of	6
	Project N	umber 107608						Date		2-15	5-19
	Depth	Description	Class	Blow Count	Recov.	Run/ Time	Sample Desig.	Р вz	PID (pp вн	om) s	Remarks/ Water Levels
Γ	_								•	•	-
				NA							-
	83	CLAY with fine sand, light brownish gray	CL_								
	_	calcareous nodules, trace manganese oxide		9/							-
	84—	staining		10/ 14	1.17/ 2		83 - 85				
	_										– 85-87 Shelby Tube
	85—										Sample collected
	_										for ASTM D4318 –
	86—			NA	0.91/2		EB-17				- Samples collected
	_						05-07				for ASTM D2216 -
	87—										
	=										-
		Bottom of Boring @ 87'									Piezometer – Installed –
	- 00										-
											-
	89										
	_										
	90										
	_										-
	91-										
17/21	_										-
DT 11	92—										
MS.G	_										
	93—										
GPJ \	_										
DFILL.	94—										
A LAN	=										-
TORI	05										-
08 VIC	9J _										
1076											-
LOGS	96 —										
RING	_										
G BO	97—										
AL LC	_										-
MENT	98—										
/IRON	_										
EN	99 -									. .	
										₹ ^E	
	Pe	ermit Application 1522B	Attachm	nent 5-14	46			F	Revision	0, Marc	h 28, 2022

Drilling Log

Project Name Project No. Boring Number EB-													8-18	3			
G	round El	evation	VD88	_	Location Victoria	тх			Latitu	ude	13438	298.99 59.96	Page		1 01	f 3	
Ai	ir Monito	ring Equi	pment 4-Gas	I	viotoria,	17			Long	Jiluue	20002		Total F	ootage	27		
	Drilling	Туре	Hole Size	Overt	burden Footage	Bedro	ock Foota	age	No	. Of San	nples	No. Cor	e Boxes	Dep	th to Wa	ater	Date Measured
F	Rotary	Wash	3.75"		37		0			0			-				
D	rilling Co	ompany	Braun Intertec						Dril	lers (s)	C. Cı	rews					
D	rilling Riç	g Ardo	co Model K 4x4	1					Typ Sar	be of mpler		Split Sp	oon				
Da	ate 1-	13-19		То	1-13-19				Fiel	ld Obse	rver (s)	M. Pih	l				
				_				Blo	w		Run/	Sample	PI	D (ppr	n)		Remarks/
	Depth			Descri	iption		Class	Cou	int I	Recov.	Time	Desig.	BZ	BH	S	Sp	Water Levels
	_															sar	mpling performed ery 5 feet unless
	1															oth	erwise noted
	_							NA	4	/ 3							
	2 3 CLAY some silt, dark gray																
	3 — CLAY some silt, dark gray to moist, soft, high plasticit																· · · · · · · · · · · · · · · · · · ·
	3 CLAY some silt, dark gray (10 to moist, soft, high plasticity				0YR 4/1), dam	np CH											-
	CLAY some silt, dark gray (10YR to moist, soft, high plasticity						4/	,									
	4						5/ 4	/ ^	1.33/ 2		3 - 5					-	
	5																-
															, NT	E OF	TEV
21									<u>,</u>	13							
T 11/7/	7							11/		75					DAVID	SCOTT	BARKER
MS.GD															GI GI	1293	GY E
NILLIA	8		V with cond light v						_						SIONA	LY	ED SCI
/ LdD.		6/4),	damp to moist, so	ft, with	h calcareous	ĸ	UL										
ADFILL	9—	nouu						6/ 9/		1.17/ 2		8 - 10					
RIA LAN	=							10									
VICTOF	10								_								-
07608	_																
OGS 1	11																_
RING L								NA	4	/ 3							
DG BO	12-																-
TAL LC																	
NMEN	13								+								-
ENVIRC	14							9/	,								
-							•	-	•			. .			X E	BUR	NS
	Pe	ermit App	lication 1522B				Attachm	nent 5	5-147	7			R	evision	0, Marc	MC h 28,	

							Borin	ng Numbe	r EB	-18
Project Na	ame City of Victoria Landfill Expansion						Page)	2 of	3
Project N	umber 107608						Date		1-13	-19
Depth	Description	Class	Blow Count	Recov.	Run/ Time	Sample Desig.	P 87	lD (ppr	n)	. Remarks/ Water Levels
=	CLAY with sand, light yellowish brown (10YR 6/4), damp to moist, soft, with calcareous nodules	CL	16/ 19	1.83/ 2		13 - 15				- - -
15										
16-										
17-			NA	/ 3						-
18										-
	SAND some silt, light brownish gray (10YR 6/2), damp to moist, fine to medium grained	SM	10/							
19			11/ 16	1.5/ 2		18 - 20				
20										
21-										-
22-			NA	/3						
23										
			32/	0 58/ 2						-
			50/5	0.00/ 2		23 - 25				
25— 										
			NA	/ 3						
										-
- 000 1076(
			24/ 23/	1.83/ 2		28 - 30				-
			23			20-00				
31 - 31 -			NA							
ш <u>со,</u> Р	ermit Application 1522B	Attachn	nent 5-14	48		<u> </u>	F	Revision	0, Marc	

Project Name City of Victoria Landfill Expansion Project Number 107608	Page 3 of 3 Date 1-13-19 PID (ppm)										
Project Number 107608	Date 1-13-19 PID (ppm)										
Project Number 10/608 Date 1-13-19 Blow Blow Run/ Sample PID (ppm)											
DepthDescriptionClassBlow CountRun/ TimeSample Desig.	BZ BH S	Remarks/ Water Levels									
Depth Description Class Blow Count Recov. Run/ Imm Sample Desig. 32 -	BZ BH S N	Remarks/ Nater Levels									
48 - Attachment 5-149	Revision 0. March 28	S S S S S S S S S S S S S S S S S S S									

Drilling Log

Project Name City of Victo	oria Landfill Expa	Project No. Insion 107608							Boring	Numbe	' EB	3-19	}
Ground Elevation		Location	ту		I	Latitude	13438	734.31	Page		1 0		<u></u>
Air Monitoring Equi	pment		, 17			Longitude	20000	-1.01	Total F	ootage	1 01	0	
Drilling Type	Hole Size	Overburden Footage	Bedro	ck Foota	ige	No. Of Sa	mples	No. Core	Boxes	Dep	90 th to Wa	ater	Date Measured
Rotary Wash	3.75"	90		0	-	1							
Drilling Company	Braun Intertec		ļ			Drillers (s)	C. C	rews					
Drilling Rig Ard	co Model K 4x4					Type of Sampler		Split Sp	oon, Sh	elby T	ube		
Date 2-14-19		то 2-14-19			_	Field Obse	erver (s)	M. Pih	I			_	
					Blo	MA/	Run/	Sample	PI	D (ppr	n)		Remarks/
Depth		Description		Class	Cou	nt Recov.	Time	Desig.	BZ	BH	S		Water Levels
$ \begin{array}{c} 1 \\ 2 \\ 2 \\ 3 \\ - CLA \\ dam \\ calca \\ 4 \\ - \\ 5 \\ - \\ 6 \\ - \\ 7 \\ - \\ 8 \\ - CLA \\ - \\ 5 \\ - \\ 6 \\ - \\ - \\ 7 \\ - \\ 8 \\ - CLA \\ 5 \\ - \\ - \\ - \\ $	Y some silt, very da p to moist, high pla areous nodules, tra Y some fine sand a damp to moist, me areous and mangar staining	ark brown (10YR 2/2 sticity, trace ce rootlets and silt, brown (10Yf adium plasticity, trace nese nodules, trace	2),		NA 3/4/ 6 NA 5/8/ 11	 /3 1/2 /3 1.66/2 /3 		3 - 5 8 - 10			SILVIE BAVID SC GER SILVIE GER SILVIE GER SILVIE GER SILVIE GER SILVIE	OF 7	Iit Spoon
	e, very fine grained	, poorly graded	-,	5. 0101	7/								
Permit App	lication 1522B			Attachm	nent 5	-150	I	1	Re	evision	0, Marc		NS DONNELL

							Borin	g Numbe	er EB	8-19
Project Na	ame City of Victoria Landfill Expansion						Page	•	2 of	6
Project Nu	imber 107608			1			Date		2-14	I-19 I
Depth	Description	Class	Blow Count	Recov.	Run/ Time	Sample Desig.	P _{BZ}	ID (pp вн	m) s	Remarks/ Water Levels
	SAND, light gray (10YR 7/1), damp to moist, loose, very fine grained, poorly graded	SP-SM	9/ 11	/2		13 - 15			-	
15-										
										-
			NA	/ 3						-
18	SAND trace clay, pale brown (10YR 6/3).									
	damp to moist, fine grained, trace iron staining		7/							
			11/	0.91/2		18 - 20				
20-										
21										-
			NA	/ 3						-
22										
23	SAND trace clay, pale brown (10YR 6/3),	-sc								
	damp to moist, fine grained, trace manganese nodules, trace iron staining		7/	2/2						-
			13	2/2		23 - 25				
25										
			NA	/ 3						-
28	SAND, light brownish gray (10YR 6/2), damp	SP-								
	to moist, dense, trace iron staining		8/ 10/	2/2						-
			21			28 - 30				-
31 -										-
Pe	ermit Application 1522B	Attachn	nent 5-1	51			F	Revision	0, Marc	
									,	,

							Borin	g Numbe	er EB	3-19
Project Na	ame City of Victoria Landfill Expansion						Page	•	3 of	6
Project Number 107000 Depth Description Class Count Recov. Time Desig. BZ										I-19
Dopth	Description	Close	Blow	Bacov	Run/	Sample	P	ID (рр	m) T	Remarks/
	Description	Class	Count	Recov.	Time	Desig.	BZ	ВН	s	
=				/ 3						
32-			NA							
33-										
	damp to moist, calcareous, trace subagular	30								
34-	iron staining		-/ -/	1.17/2		EB-19				
=			-			33 - 35				for ASTM D2216 –
35										and D5084 -
55 =										
30										
			NA	/3						
37										
38	SAND, gray (10YR 6/1), damp to moist, fine to	SP								
	medium grained, multicolor grains		5/							
39-			7/ 10	0.66/ 2		38 - 40				
_										-
40-										
										=
41-										
			NA	/ 3						
42										
43-										
44			12/ 15/	0.58/2		12 15				
			21			43 - 45				
45-										
16_										-
										-
			NA	/3						=
48 -										-
·		•							N E	BURNS
Pe	ermit Application 1522B	Attachm	nent 5-1	52			F	Revision	0, Marc	MCDONNELL.

							Borin	ig Numb	er EE	3-19
Project Na	ame City of Victoria Landfill Expansion						Page	•	4 of	6
Project N	umber 107608				-		Date		2-14	1-19
			Blow		Run/	Sample	Р	ID (pp	om)	Remarks/
Depth	Description	Class	Count	Recov.	Time	Desig.	BZ	BH	S	Water Levels
=	SAND, light gray (10YR 7/2), damp to moist, fine grained, trace calcareous nodules	SP								
			30/							-
49			50/3	0.58/2		48 - 50				
=										-
50-										
_										
51-										
=			ΝΛ	13						-
				/ 3						-
52										
53-	SAND trace clay, light gray (10YR 7/1), damp	-sc								
=	to moist, loose, fine grained, trace iron staining, calcareous									-
54-			14/ 27/	1.5/ 2		53 55				
=			36			55 - 55				-
55										-
55-										-
=										
56-										
=			NA	/ 3						-
57—										
58-										
										-
			8/							-
59			10/ 16	0.75/2		58 - 60				
60										
61-										
			NA	/3						
				, 0						-
										-
63-	SAND trace clay, very pale brown (10YR 7/3),	-sc								63-65 Shelby Tube
	damp to moist, dense, very fine to fine grained, calcareous		,							-
64—			-/ -/	0.91/2		63 - 65				
			-							-
65 -										-

Revision 0, March 28, 202

							Borin	g Numbe	r EB	5-19
Project Na	ame City of Victoria Landfill Expansion						Page	•	5 of	6
Project N	umber 107608		1				Date		2-14	-19
Depth	Description	Class	Blow Count	Recov.	Run/ Time	Sample Desig.	Р вz	ID (ppr вн	n) s	. Remarks/ Water Levels
66			NA	/ 3					•	
68 69 69 70	SAND, light gray (10YR 7/2), damp to moist, fine grained	SP	12/ 17/ 23	1.17/ 2		68 - 70				
71			NA	/ 3						
73-	SAND, light yellowish brown (10YR 6/4), damp to moist, loose, fine to medium grained, poorly graded	SP-SC	12/ 14/ 19	0.66/ 2		73 - 75				
			NA	/ 3						
78 79 79 80	SAND, light brownish gray (10YR 6/2), damp to moist, loose, fine to coarse grained	SP	16/ 20/ 22	1.5/ 2		78 - 80				
81			NA	/ 3					•	
Pe	ermit Application 1522B	Attachr	nent 5-1	54			F	Revision	0, Marc	

							Borin	ig Numbe	er EB	-19
Project N	ame City of Victoria Landfill Expansion						Page	•	6 of	6
Project N	umber 107608						Date		2-14	19 I
Depth	Description	Class	Blow Count	Recov.	Run/ Time	Sample Desig.	Р вz	ID (ррі вн	m) s	Remarks/ Water Levels
			NA					•	•	-
83-	SAND, light brownish gray (10YR 6/2), damp	SP								
84	to moist, loose, line to coarse grained		5/	0.66/ 2						-
			14	0.00/ 2		83 - 85				-
85-										
86-										-
			NA	/ 3						-
87-										
88-	CLAV with and light brownigh grow (10VP									-
	6/2), damp to moist, stiff, trace plasticity, trace calcareous gravel		5/							
89-			9/ 13	1.17/ 2		88 - 90				
90-										
	Botom of Boring @ 90'									Piezometer -
91										
92-										-
										-
94-										
95										-
96										
97—										-
98										
99 -										
P	ermit Application 1522B	Attachm	nent 5-1	55			F	Revision	0, Marc	BURNS MSDONNELL.

Drilling Log

F	Project Na Citv	ame of Victo	oria I andfill Expa	ansion	Project No. 107608								Boring	Numbe	FP	3-20)
	Ground El	levation			Location	τv			Latitu	ude	13439	244.5	Page				-
4	63.7 Air Monito	rπ. NA	pment		victoria,	IX			Long	gitude	203850	01.09	Total F	ootage	1 01	3	
	Drilling	Type	4-Gas	S	ourden Footage	Bodro			No	Of Sar	nnles	No. Cor	Boyes	Den	37	ator	Date Measured
	Rotary	Wash	3 75"		37	Deuro	0	age -	NO	01 Sal	iipies	110. 001	-	Бер			
╞		mpany	Braun Intertec		01		0		Dril	llers (s)		~ew/s					
		a Ardo	no Model K 4x4						Тур	be of	0.01	Snlit Sn	noon				
	Date 1.	-13-19		То	1-13-19				Sai	mpler Id Obse	rver (s)	M Pih					
F				10										D (nnr	n)		
	Depth			Descri	ption		Class	Blo Cou	w	Recov.	Run/ Time	Sample Desig.	BZ	вп	۱۱) ۹	{	Remarks/ Water Levels
				2000.1	P u u u		0.000					2 00.g.	DZ	БП	5	Sp	lit Spoon
																eve	mpling performed – ery 5 feet unless –
	1																ierwise noted
								N/	4	/ 3							-
	2-																
	_																-
	3-		Y some silt, very d	ark gra	ay (10YR 3/1),												
	_	damp	o to moist, stiff, hig	h plas	ticity, trace roc	e roots			,								-
	4						4/ 5/ 6			2/ 2		3 - 5					
	4							6									-
	5-																-
	_																-
	6															OF	_
7/21								N/	4	/ 3					SIATE		EXAS -
DT 11	7—														DAVID SC	TTP	
MS.GI														at the second se	UIGEC	Loc	Y 5
VILLIA	8				10VP 6/3) day	<u> </u>								FE	04/0	2931 5/2	
GPJ \		to mo	pist, stiff, calcareou	us and	l manganese	пр									ONAL	T GE	
DFILL	9	nouu		ining				6/ 6/	/ /	2/2		0 10					-
IA LAN	3							9				0 - 10					-
CTOR	10																-
608 VI	-																-
S 107	11																-
GLOG								NA	Δ	/3							-
BORIN	12									, 0							-
LOG	' ⁻ -																-
INTAL	13																-
RONME	'' - -	SAN grain	D, light gray (10YF ed, trace mangane	R 7/1), ese no	dry to damp, findules	ine	SP										=
ENVIF	14 -							10)/								-
															X E	JU F	RNS
	Pe	ermit App	lication 1522B				Attachn	nent 5	5-156	6			Re	evision	0, Marc	MC n 28,	DONNELL

								Borir	ng Numbe	er EE	3-20
	Project N	lame City of Victoria Landfill Expansion						Page	9	2 of	3
	Project N	lumber 107608						Date		1-13	3-19
	Depth	Description	Class	Blow Count	Recov.	Run/ Time	Sample . Desig.	F BZ	PID (pp вн	m) s	Remarks/ Water Levels
	_	SAND, light gray (10YR 7/1), dry to damp, fine	SP	15/ 19	1.66/ 2		12 15		ļ	•	-
	-	graineu, trace manganese nouules					13 - 15				-
	15—										
	=										
	16										
	-			NA	/3						
	17—										
	_										
		SAND, light gray (10YR 7/2), damp to moist, loose, fine to medium grained, trace	SP								
	-	manganese and iron nodules		16/							
	19			23/	0.66/ 2		18 - 20				
	=			20							-
	20—	1									
		1									-
		1									
	21-	1									
	=	1		NA	/ 3						-
	22—	1									
	=	1									-
		1									-
	23-	trace calcareous nodules									
17/21	_	1									
DT 11	24—	1		40/	0.91/2		22 25				
IS.G	-	1		50/4			23-23				
LIAN		1									
II VII	25	1									
L.GP	-	1									
IDFIL	26—	1									
A LA	_	1		NA	/3						-
TOR		7									-
8 VIC	2/	7									
0260	=	7									-
GS 1	28—	SAND with clay, light gray (10YR 7/2), damp	<u></u>								
IG LC	=	to moist, abundant calcareous nodules, heavy									-
ORIN	20	Iron staining		16/	12						-
В ОС	29]		20	/2		28 - 30				
JAL L(-]									
MENT	30—	}					$\left - \right $				
RON	-	1		NA							
ENVI	31	1									-
_	_									N E	BURNS
	Р	Permit Application 1522B	Attachn	nent 5-1	57			I	Revision	0, Marc	MCDONNELL.
										,	

							Borin	g Numbe	er EB	3-20		
Project N	Project Name City of Victoria Landfill Expansion Page 3 of 3 Project Number 107608 Date 1-13-19 Blow Run/ Sample PID (ppm)											
Project N	Project Number 107608 Date 1-13-19 Depth Description Class Count Recovery Time Designer PID (ppm) Remarks/ Water Levels											
Depth	Description	Class	Blow Count	Recov.	Run/ Time	Sample Desig.	P _{BZ}	ID (ppi вн	m) s	Remarks/ Water Levels		
32 33 33 34 35 36 37	SAND with clay, light gray (10YR 7/2), damp to moist, medium, abundant calcareous nodules, heavy iron staining Bottom of Boring @ 37'	- <u>s</u> c-	NA 7/ 11/ 14 11/ 14/ 18	/ 3		33 - 35 35 - 37						
38 38 39 39 40 40 41 41 42 41 43 41 44 42 45 43 46 47 47 44 48 45 49 44 40 44 41 45 42 44 43 44 44 45 47 48	Bottom of Boring @ 37'									Backfilled with Bentonite Slurry		
Pe	ermit Application 1522B	Attachn	nent 5-1	58			F	Revision	0, Marc	BURNS MCDONNELL.		

Drilling Log

Project Name City of Vic	toria I andfill Expa	Project No. Insion 107608							Boring	Number	EB	-21	
Ground Elevation		Location	ту		L	atitude	13438	660.85	Page			6	
Air Monitoring Equ	uipment	viciona,			<u> </u>	_ongitude	20311	20.20	Total F	ootage	1 01	0	
Drilling Type	4-Gas Hole Size	S Overburden Footage	Bedrock	< Foota	de	No. Of Sa	mples	No Core	Boxes	Dept	88 h to Wa	ter	Date Measured
Rotary Wash	3.75"	88	(0	30	4				2.001			
Drilling Company	Braun Intertec					Drillers (s)	C. C	rews					
Drilling Rig Arc	lco Model K 4x4					Type of Sampler		Split Sp	oon, Sh	elby Tu	ube		
Date 1-12-19		то 1-12-19				Field Obse	erver (s)	M. Pih	/	,			
								Comple	PIE	D (ppm	ı)		Demerike/
Depth		Description	C	Class	Cou	nt Recov.	Time	Desig.	ΒZ	BH	S		Water Levels
	2 CLAY with slit, black (10YR 2/1), damp to moist, stiff, high plasticity, some roots 2 CLAY with slit, very dark brown (10YR 2/ damp to moist, high plasticity, trace calcareous nodules, roots				NA	0.91/2		0 - 2				Cor Spc unle note 0-2	ntinuous Split pon sampling ess otherwise ed Shelby Tube
$\begin{array}{c c} 2 & - & - & - & - & - & - & - & - & - & $	2 CLAY with silt, very dark brown (10YR 2/2) damp to moist, high plasticity, trace calcareous nodules, roots 3 4 CLAY some sand and silt, light brownish g				NA	1.33/ 2		EB-21 2 - 4				2-4 Sar for <i>i</i> and	Shelby Tube
$\begin{array}{c c} 4 & - & - & - & - & - & - & - & - & - & $	4 CLAY some sand and silt, light brownish gray (10YR 6/2), damp to moist, stiff, trace plasticity, trace calcareous and iron nodules				NA	1.33/ 2		4 - 6				Sar for 7 4-6	nple collected ASTM D4318 Shelby Tube
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	AY with sand trace s wn (10YR 6/4), dam sticity, trace calcare easing sand conten tling	silt, light yellowish p to moist, trace ous and iron nodules t with depth, trace gr	- ay	ĊL	8/ 7/ 7	2/ 2		6 - 8		Ē	SIAT	E OF	TE Har
					5/ 6/ 9	1/ 2		8 - 10		R.C.	C C C C C C C C C C C C C C C C C C C	CENS	TO SET
				10/ 12/ 13	2/2		10 - 12					-	
12 SAND, light yellowish brown (10YR 6/4), damp to moist CLAY with sand and some silt, light yellowish brown (10YR 6/4), damp to moist, trace calcareous nodules, gray mottling 14				SP CL	12/ 15/ 17	1.5/ 2		12 - 14					-
Permit Ap	plication 1522B		At	ttachm	ient 5	-159			Re	evision 0	, March		NS 2020NNELL

			Borin	ng Numb	er EB	3-21				
Project N	ame City of Victoria Landfill Expansion						Page)	2 of	6
Project N	umber 107608 I			1			Date		1-12	2-19
Depth	Description	Class	Blow Count	Recov.	Run/ Time	Sample Desig.	P BZ	ID (pp вн	m) s	Remarks/ Water Levels
_	SAND some clay, light yellowish brown (10YR	SC						!	1	-
-	6/4), damp to moist, dense, line grained		12/							-
15-			13/	2/ 2		14 - 16				
-			18							-
16										-
										-
			11/							
17—			10/	1/ 2		16 - 18				
_			15							
18_										
_			10/							
19-			11/	1.33/ 2		18 - 20				
=			12							
20-										
=			10/							
21-			10/	/ 2		20 - 22				
=			15							
22-										
	CLAY with silt, dark gray (10YR 4/1), damp to moist, very soft, high plasticity	СН								
=			19/							
23-			17/	2/2		22 - 24				
										-
24-										
	damp to moist, fine grained, some clay at 25'	SC								-
			13/							-
25-			14/ 18	1.5/ 2		24 - 26				
26-	SAND light vollowich brown (10YP 6/4)									
	damp to moist, loose, fine grained	J JF								-
			11/							-
2/			15/ 19	0.83/2		26 - 28				
										-
28-										
										-
			10/	0.02/2						-
29-			15	0.03/2		28 - 30				
]	1								-
30-	}	1				$\left - \right $				-
	1		NA							-
31_										-
_									E	BURNS
P	ermit Application 1522B	Attachn	nent 5-1	60			F	Revision	0. Marc	
	1.1								,,	-, ====

							Borir	ng Numb	er EB	8-21
Project Na	ame City of Victoria Landfill Expansion		Page)	3 of	6				
Project N	umber 107608				1		Date		1-12	2-19
			Blow		Bun/	Sampla	Ρ	ID (pp	m)	Bemerke/
Depth	Description	Class	Count	Recov.	Time	Desig.	ΒZ	BH	S	Water Levels
	SAND, light yellowish brown (10YR 6/4),	SP		/2		20 22			- !	-
-	damp to moist, loose, line grained		NA			30 - 32				-
32—	SAND trace clay, light vellowish brown (10YR	<u>sc</u>								
1 -	6/4), damp to moist, loose									
33			16/ 16/	0 66/ 2						-
			16	0.00/ 2		32 - 34				
_										
34-	SAND, light yellowish brown (10YR 6/4), dry									
=	to damp, loose, fine grained									-
35-			19/ 20/	0.66/2						
_			36			34 - 36				-
=										-
36	SAND trace clay, light yellowish brown (10YR	-sc								
=	6/4), damp to moist, very loose									-
37—			8/ 12/	0.66/ 2		36 38				
=			10			30 - 30				-
										-
38										-
_			11/							-
39—			11/	0.5/ 2		EB-21 38 - 40				Samples collected
_			10							for ASTM D422 and –
40-										
										-
			11/							-
41			11/ 15	0.66/ 2		40 - 42				
_										-
42	SAND light vellowish brown (10YR 6/4)									
	damp to moist, loose, fine grained	0.								
13_			6/ 8/	0 66/ 2						_
			10	0.00/ 2		42 - 44				
44	iron staining									
=										-
45			9/ 16/	0.66/2		11 10				
=			18			44 - 40				-
										-
46	CLAY with sand, gray (10YR 6/1), damp to	- CL								
=	וויטושנ, שנווו, שנווע כמוכמופטעש ווטעעופט		20/							-
47			9/	1.17/ 2		46 - 48				
=			10							
48 -	•									-
									E	BURNS
Pe	ermit Application 1522B	Attachn	nent 5-1	61			F	Revisior	n 0, Marc	MSDONNELL.

				Boring Number EB-21							
	Project Na	ame City of Victoria Landfill Expansion		Page)	4 0	of 6				
	Project Nu	umber 107608						Date		1-	12-19
	Depth	Description	Class	Blow Count	Recov.	Run/ Time	Sample Desig.	Р вz	ID (pp вн	om)	Remarks/ Water Levels
		CLAY with some sand and trace silt, gray (10YR 6/1), damp to moist, stiff, calcareous nodules, iron staining	CL						•		48-50 Shelby Tube _ - -
	49			NA	2/ 2		48 - 50				
	50	SAND with clay trace silt, light brownish gray (10YR 6/2), damp to moist, medium, fine grained, increasing clay content with depth	- <u>sc</u> -								
	51	5		9/ 11/ 11	1.5/ 2		50 - 52				
	52										
	53	SAND some silt, light brownish gray (10YR 6/2), damp to moist, loose, fine grained	SM	12/ 14/ 12	2/ 2		52 - 54				
	54										
	55			20/ 36/ 39	1/ 2		54 - 56				
	56										
'21	57-			16/ 26/ 30	0.66/ 2		EB-21 56 - 58				Sample collected for ASTM D422
1S.GDT 11/7	58-										
gpj william	59			9/ 11/ 13	0.5/ 2		58 - 60				
A LANDFILL.	60										
308 VICTORIA	61			9/ 18/ 30	0.66/ 2		60 - 62				
3 LOGS 1076	62	CLAY with sand, pale brown (10YR 6/3), damp to moist, medium, trace plasticity, with	<u>c</u> l								
LLOG BORINC	63	calcareous nodules		11/ 13/ 39	0.83/ 2		62 - 64				
/IRONMENTAI	64			4=1							
EN	65			1//						\$	
	Pe	ermit Application 1522B	Attachn	nent 5-1	62			F	Revisio	n 0, Ma	rch 28, 2022

							Borin	ng Numb	er EB	3-21
Project Na	ame City of Victoria Landfill Expansion		Page	9	5 of	6				
Project N	umber 107608						Date		1-12	<u>2-19</u>
			Diam		Dum (0	Р	PID (pp	m)	Dama arka (
Depth	Description	Class	Count	Recov.	Time	Sample Desig.	ΒZ	BH	S	Water Levels
_	CLAY with sand, pale brown (10YR 6/3),	CL	28/	0.83/2				!	4	-
-	damp to moist, medium, trace plasticity, with calcareous nodules		30			64 - 66				-
66-										
=	(10YR 6/2), damp to moist, medium	SC								-
=			15/							
67-			15/ 19	1/ 2		66 - 68				
_										-
68-										
	SAND trace silt, pale brown (10YR 6/3), loose, fine to medium grained	SM								
_			17/							
69-			23/	0.5/ 2		68 - 70				
			20							
70-										
/0	SAND some clay and gravel, pale brown	sc								-
			17/							
71-			14/	0.66/ 2		70 - 72				
=			15			10 12				-
										-
/2	SAND, pale brown (10YR 6/3), damp to moist,	SP								
	loose, some iron staining		10/							
73-			19/ 22/	0.5/2		70 74				
=			23			12 - 14				-
_										
74-	CLAY with sand trace silt, pale brown (10YR									
	6/3), damp to moist, stiff									
75			19/	0 58/ 2						
			24	0.00/ 2		74 - 76				
_										-
76-	SAND, pale brown (10YR 6/3), damp to moist.		-							
	fine to medium grained									
			24/	0.00/0						-
			26/	0.33/2		76 - 78				-
										-
78-										
										-
			25/							
/9			25/ 40	0.5/2		78 - 80				
80-										
	1									-
	1		24/							-
81-			31/	0.66/ 2		80 - 82				
										-
82 -	1									
									S E	BURNS
Pe	ermit Application 1522B	Attachr	nent 5-1	63			F	Revision	0, Marc	
	••						-			

			Borin	g Numb	er EE	8-21				
Project N	ame City of Victoria Landfill Expansion		Page		6 of	6				
Project N	umber 107608						Date		1-12	2-19
Depth	Description	Class	Blow Count	Recov.	Run/ Time	Sample. Desig.	P _{BZ}	ID (pp вн	m) s	Remarks/ Water Levels
83-	CLAY some silt, light brownish gray (10YR 6/2), damp to moist, medium, trace calcareous nodules, mottled gray	CL	17/ 24/ 28	1/ 2		82 - 84			-	- - - - - - - - - - - - -
85-			12/ 14/ 18	0.91/2		EB-21 84 - 86				Sample collected for ASTM D422
87-			8/ 11/ 10	2/ 2		86 - 88				
89	Bottom of Boring @ 88'									Backfilled with
90-										- - - - - - -
91										
93										
95-										
96										

Revision 0, March 28, 202

Drilling Log

Proje	ect Na	me of Victo	ria Landfill Evna	Project No). 608						Boring	l Numbe	FR	-22	
Grou	ind Ele	evation	па сапопії схра	Location	000		L	Latitude	13438	260.57	Page			-22	
Air M	63.2	ft. NA	VD88	Vict	oria, TX		l	Longitude	26381	53.95	Total	Footage	1 of	3	
	Ionitoi		4-Gas	5							rotari	ootage	37		
Dr	rilling	Туре	Hole Size	Overburden Foo	otage Be	edrock Foota	age	No. Of Sa	mples	No. Co	e Boxes	Dep	oth to Wa	ater	Date Measured
Rot	tary ۱	Wash	3.75"	37		0		0		-	-				
Drillir	ng Co	mpany	Braun Intertec					Drillers (s)	C. C	rews					
Drillir	ng Rig	Ardo	co Model K 4x4					Type of Sampler		Split Sp	ooon				
Date	1-	11-19		то 1-11-19				Field Obs	erver (s)	M. Pil	าไ				
											PI	D (ppr	n)		
Dep	oth			Description		Class	Blov Cou	w nt Recov.	Run/ Time	Sample Desig.	BZ	вн	, s		Remarks/ Water Levels
		SILT	with sand, dry to o	Jamp		ML						5.1	ļ	Split	Spoon
	Ξ													sam ever	y 5 feet unless
1														othe	erwise noted
	4						NA	/3							
2	2														
	7														
3	Ę														_
	ί	CLA (5YR	Y with silt and som 3/1), dry to damp	e sand, very da , stiff, medium p	rk gray lasticity	CL									
	. =	,	,				6/								
4							9/ 9	2/2		3 - 5					-
	Ξ														
5	;														-
	4														
6	;–														
7/21	Ξ						NA	/ 3							
ਵੇ ⊢ 7	,												15.0	F TH	_
1S.GD	4												THIE		A.S.
o ILLIAN	,												AVID SCO	N	
≥ O	' I	SAN to da	D some clay, pale mp, loose	brown (10YR 6	/3), dry	SC						at a	GEO	BAR	LEK L
			• *				8/					OFE	24/05	1200	
1 I I I I I I I I I I I I I I I I I I I	"						7/ 7	1/2		8 - 10			ONAL Y	NSED GEO	
DRIA I	Ξ														
<u>آ</u> کِآ)														
07608	4														
ଞ ଅ															
NGLC	Ξ						NA	/ 3							
R 8 12	2														
	4														
	Ē														
	' <u>–</u>	SAN	D, light gray (10YF , fine grained	R 7/2), dry to da	mp,	SP									
	, 1	-	5				8/								
							0/						•		

Permit Application 1522B

Revision 0, March 28, 202

							Borin	ig Numbe	r EB	3-22
Projec	et Name City of Victoria Landfill Expansion						Page	•	2 of	3
Proje	ct Number 107608						Date		1-11	-19
Dep	th Description	Class	Blow Count	Recov.	Run/ Time	Sample Desig.	P 87	'ID (ppr	n)	Remarks/ Water Levels
	SAND, light gray (10YR 7/2), dry to damp,	SP	11	1.17/ 2			DZ	ы	<u> </u>	
	loose, fine grained					13 - 15				
15	_									
	-									-
	1									-
16										
	-		NA	/ 3						-
17										
	-									
10	-									-
18										-
	3		19/							-
19			18/	1.66/ 2		18 - 20				
	_		25							
20	-									
	1									
	-									-
21										
	-		NA	/ 3						-
22										
	7									
0.00	-									-
_ 23										-
1/7/2	3		14/							-
24			18/	0.83/2		23 - 25				
MS.G	_		19							
1 25										
≤ 20 2										
ILL.G	-									
by 26										
AIA L	1		NA	/ 3						-
D 27										
308 V	-									-
\$ 1076	-									-
8 28 9	SAND, light yellowish brown (10YR 6/4), dry	SP								
RING			10/							-
^b 29			30/	0.83/2		28 - 30				
- LOG	Ξ		34							-
30										-
SO NMC	_									
21 21	-		NA							
ய_ ப		I	I	I		I			.	
									X	
	Permit Application 1522B	Attachn	nent 5-1	66			F	Revision	0, Marc	h 28, 2022

			Borin	ng Numbe	er EE	3-22				
Project N	Name City of Victoria Landfill Expansion		Page	9	3 of	3				
Project N	Number 107608						Date		1-11	I-19 I
Depth	Description	Class	Blow Count	Recov.	Run/ Time	Sample Desig.	Р вz	ID (pp вн	m) s	Remarks/ Water Levels
Depth 32 33 34 35 36 37 36 37 36 37 40 41 41 42 43 44 44 45 45 45 46 45 46 45 46 45 46 45 46 45 45 46 45 46 45 45 45 45 45 45 45 45 45 45	Description SAND, light yellowish brown (10YR 6/4), dry to damp, loose, fine to medium grained SAND, brownish yellow (10YR 6/6), damp to moist, loose, fine to medium grained Botom of Boring @ 37'	Class SP	Blow Count NA 12/ 14/ 17 7/ 9/ 11	Recov. / 3 1.5/ 2 1.33/ 2	Run/ Time	Sample Desig. 33 - 35 35 - 37	BZ	ID (рр	m) <u>s</u>	Backfilled with Bentonite Slurry
47- ENVIRONME 48										
F	Permit Application 1522B		F	Revision	0, Marc					

Drilling Log

Pr	oject Na Citv	me of Victo	oria I andfill Expa	Insion	Project No. 107608							Boring	Numbe	FR	3-23	
Gr	ound Ele	evation			Location	ту		L	atitude	13437	709.96	Page		1 ~	- <u>-</u> 0 - 7	
Air	02.9 Monitor	ring Equi	pment		viciona,			<u>L</u>	ongitude	20304	03.34	Total F	ootage	1 01		
	Drilling	Туре	4-Gas Hole Size	S Overbi	urden Footage	Bedro	ock Foota	age	No. Of Sa	mples	No. Cor	e Boxes	Dep	102 th to Wa	ater	Date Measured
F	Rotary \	Wash	3.75"		102		0	<u> </u>	3	•	-	-				
Dr	illing Co	mpany	Braun Intertec	ļ					Drillers (s)	C. C	rews				I	
Dr	illing Rig	a Ardo	co Model K 4x4						Type of Sampler		Split Sp	oon, Sh	elby T	ube		
Da	ate 1-	24-19		То	1-24-19				Field Obse	erver (s)	M. Pił	ıl				
								Play		Dun/	Sampla	PI	D (ppr	n)		Bomarka/
	Depth			Descrip	otion		Class	Cour	nt Recov.	Time	Desig.	ΒZ	BH	S		Water Levels
		CLA` mois	Υ, very dark brown t, soft, high plastici	i (10YR ity	8 2/2), damp to)	СН	1/ 1/ 1	0.42/ 2		0 - 2				Cor Spo unle not	ntinuous Split oon sampling ess otherwise ed
	3-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1							2/ 4/ 4	0.75/ 2		2 - 4					
	4 CLAY with fine sand and silt, pale brown (10YR 6/3), damp to moist, stiff, trace calcareous nodules and iron staining				h fine sand and silt, pale brown 3), damp to moist, stiff, trace is nodules and iron staining			3/ 7/ 1	1/2		4 - 6					
VILLIAMS.GDT 11/7/21	7							7/ 8/ 10	1.5/ 2		6 - 8		A DAVI	TE OF	BARKE	R
Toria Landfill.gpj w	9							7/ 8/ 8	1/ 2		8 - 10		OTESSIO	1293 LICENS VAL Y	JEOSC	
BORING LOGS 107608 VIC		SAN 6/4) o stain	D trace clay, light y damp to moist, fine ing	yellowis e graine	sh brown (10Y ed, with iron	R – –	SC	7/ 8/ 8	1.42/ 2		10 - 12					
ENVIRONMENTAL LOG	13							10/ 12/ 15	0.66/ 2		12 - 14					
	Pe	rmit App	lication 1522B				Attachm	nent 5	-168			Re	evision	0, Marc		NS 2020NNELL

			Boring Number	EB	-23				
Project N	lame City of Victoria Landfill Expansion		Page	2 of 7	7				
Project N	lumber 107608						Date	1-24-	-19
Depth	Description	Class	Blow Count	Recov.	Run/ Time	Sample Desig.	PID (ppm вz вн	1) S	Remarks/ Water Levels
15	CLAY some fine sand, light yellowish brown (10YR 6/4), damp to moist, some iron staining, calcareous	CL	13/ 15/ 18	0.58/ 2		14 - 16			
	CLAY some fine sand, light yellowish brown (10YR 6/4), damp to moist, calcareous, trace manganese nodules, trace manganese oxide staining, some iron staining	- CL	4/ 5/ 7	2/ 2		16 - 18			
19-			8/ 11/ 13	0.83/ 2		18 - 20			
21			12/ 14/ 17	1.42/ 2		20 - 22			
23-			9/ 8/ 10	1.83/ 2		22 - 24			- - - - - - - - - - - -
			16/ 16/ 19	1.33/ 2		24 - 26			
			9/ 12/ 17	1/ 2		26 - 28			-
	SAND, light yellowish brown (10YR 6/5), damp to moist, loose, fine grained with iron	- <u>-</u>	9/ 13/ 15	1.17/ 2		28 - 30			
	staining		18/						

Revision 0, March 28, 202

			Borin	g Numl	ber	EB	-23				
Project Na	ame City of Victoria Landfill Expansion		Page			3 of	7				
Project Nu	umber 107608						Date			1-24	-19
Depth	Description	Class	Blow Count	Recov.	Run/ Time	Sample, Desig.	P _{BZ}	ID (рр вн	pm)) s	Remarks/ Water Levels
32	SAND, light yellowish brown (10YR 6/5), damp to moist, loose, fine grained, with iron staining	SP	18/ 18	1.66/ 2		30 - 32			•		
33-			16/ 18/ 18	0.83/ 2		32 - 34					
34	CLAY some fine sand and silt, light yellowish brown (10YR 6/4), damp to moist, soft, trace plasticity, with iron staining	- cl									
35			22/ 50/5	1.33/ 2		EB-23 34 - 36					Sample collected for ASTM D422
36			8/	2/2							
			14			36 - 38					38-40 Shelby Tube
39-			-/ -/ -	1.5/ 2		38 - 40					
40	light brownish gray (10YR 6/2)		7/								
41			7/ 9	1.25/ 2		40 - 42					
42	trace manganese oxide staining		13/ 17/ 19	1.25/ 2		42 - 44					
44											
45			7/ 9/ 12	1.17/ 2		44 - 46					
	CLAY some fine sand and silt, light brownish gray (10YR 6/2), damp to moist, soft, trace plasticity, calcareous nodules, trace manganese oxide staining, with iron staining	- cl	9/	1.01/0							
			12/ 15	1.91/2		46 - 48					

		Borin	g Numb	er EB	3-23					
Project Na	ame City of Victoria Landfill Expansion		Page		4 of	7				
Project N	umber 107608						Date		1-24	-19
							P	ID (pp	m)	
Depth	Description	Class	Count	Recov.	Run/ Time	Desig.	BZ	BH	s	Remarks/ Water Levels
49-	CLAY some fine sand and silt, light brownish gray (10YR 6/2), damp to moist, soft, trace plasticity, calcareous nodules, trace manganese oxide staining, with iron staining	CL	-/ -/ -	1.42/2		EB-23 48 - 50			+	48-50 Shelby Tube
51	CLAY with fine sand and silt, light gray (10YR 7/1), damp to moist, stiff, trace iron staining	ĊL.	11/ 10/ 14	2/ 2		50 - 52				
53-			5/ 8/ 13	0.75/ 2		52 - 54				
54	SAND some clay, light brownish gray (10YR 6/2), damp to moist, fine grained	SC.	9/ 13/ 11	0.75/ 2		54 - 56				
56	SAND, yellowish brown (10YR 5/4), damp to moist, loose, fine grained	 SP	18/ 19/ 17	0.58/ 2		56 - 58				
	SAND, light brownish gray (10YR 6/2), damp to moist, loose, fine grained, multicolor grains	SP	14/ 17/ 19	2/ 2		58 - 60				
			12/ 17/ 19	2/ 2		60 - 62				
63			11/ 15/ 20	0.83/ 2		62 - 64				
65	CLAY with sand, light gray (10YR 7/1), damp to moist, stiff	CL	NA							64-66 Shelby Tube

Revision 0, March 28, 202
							Borir	ng Numb	er EB	3-23
Project Na	ame City of Victoria Landfill Expansion						Page)	5 of	7
Project Nu	umber 107608						Date		1-24	-19
Denth	Description	Class	Blow	Recov	Run/	Sample,	P	lD (pp	m)	Remarks/
Dopui	CLAY with sand light gray (10YR 7/1) damp	CI	Obuint	0.58/ 2	Time	Desig.	DΖ	вн	3	
	to moist, stiff		NA							-
66										-
	SAND, light brownish gray (10YR 6/2), damp	SP								-
	to moist, dense, me graned									-
67—			21/ 50/3	1/ 2		66 - 68				
68-										
	SAND trace clay, pale brown (10YR 6/3), damp to moist, loose, fine grained	SC								
			13/							-
69			47/	0.66/ 2		68 - 70				
										-
70-										
										-
			21/							-
/1			20/ 28	0.25/2		70 - 72				
										-
72-	SAND trace clay, light vellowish brown (10YR									-
=	6/4), damp to moist, fine to coarse grained,									-
	trace iron staining, tine grading to coarse with depth		12/	2/2						-
			20	2/ 2		72 - 74				
										-
74-										
75-			17/ 21/	2/2						
			21	_, _		74 - 76				
76	SAND, light yellowish brown (10YR 6/4),	SP								
	damp to moist, loose, fine grained									-
77-			14/ 19/	2/2		76 70				
			23			10-10				-
/8										
7			17/							-
79			21/	1.5/ 2		78 - 80				
			29							-
E_08										-
	SAND, light yellowish brown (10YR 6/4),	SP								-
	rounded pebbles		10/							
81-			12/	1/ 2		80 - 82				
										-
82 -										-
									E	BURNS
Pe	ermit Application 1522B	Attachn	nent 5-1	72			F	Revision	0, Marc	MSDONNELL.

								Borin	g Numbe	er EE	3-23
F	Project Na	ame City of Victoria Landfill Expansion						Page	•	6 of	7
F	Project Nu	umber 107608			-			Date		1-24	-19
	Depth	Description	Class	Blow Count	Recov.	Run/ Time	Sample Desig.	P _{BZ}	ID (ppi вн	m) s	Remarks/ Water Levels
		fine to medium grained							Į		-
	_			10/							-
	83-			12/	1.5/ 2		82 - 84				
				17							-
	84—										
	_	6/4), damp to moist, very loose, fine grained	SC								-
	o			9/	2/2						-
	00-	fine to medium grained		15	2/2		84 - 86				-
	_										-
	86	fine grained									
	_			1//							-
	87-	SAND. light vellowish brown (10YR 6/4).	- <u>-</u>	15/	2/ 2		86 - 88				
	_	damp to moist, fine to coarse grain, multicolor grains, subrounded gravel		19							
	88-	gramo, oubloandoù gravor									
	_										-
					12						-
	<u> </u>				12						
											-
	90	No recovery 90-92 ft.									
	=										-
	91—				0/ 2		90 - 92				
17/21	_										-
DT 11	92—	No recovery 92-94 ft									-
MS.GI											no recovery
VILLIA	93-				0/2						
V L 45	_			ΝΑ			92 - 94				-
FILL.0											-
LAND	94										-
ORIA											-
3 VICT	95										-
07608	=										-
OGS 1	96—										
NG L	_										-
BOR	97—										
-LOG	_										-
ENTAL											-
ONME	~~ _										-
ENVIR	99 -										-
										N E	BURNS
	Pe	ermit Application 1522B	Attachn	nent 5-1	73			F	Revision	0, Marc	MCDONNELL.

						Borin	g Numbe	r EB	-23	
Project Name City of Victoria Landfill Expansion	lame City of Victoria Landfill Expansion									
Project Number 107608					· · · · ·	Date		1-24	-19	
Depth Description	Class	Blow Count	Recov.	Run/ Time	Sample Desig.	P _{BZ}	ID (ppr вн	n) s	Remarks/ Water Levels	
100 — CLAY some fine sand and silt, pale brown (10YR 6/3), damp to moist, very stiff, iron staining	- <u>c</u> l	NA							100-102 Shelby Tube	
			1.17/ 2		EB-23 100 - 102				Sample collected for ASTM D422	
Bottom of Boring @ 102'									Backfilled with Bentonite Slurry	
Permit Application 1522B	Attachm	nent 5-1	74			F	Revision	0, Marc		

Drilling Log

Pi	roject Na Citv	me of Victo	oria Landfill Expa	ansioh	Project No. 107608								Boring	g Numbe	' EB	3-24	1
G	round Ele	evation	VD88		Location Victoria	тх			Latitude	134 263	379)28.12 33.08	Page		1 ი1		
Ai	ir Monitor	ring Equi	pment 4-Gas	I \$	viotoria,	17			Longitude	200			Total	Footage	67		
	Drilling	Туре	Hole Size	Overb	ourden Footage	Bedro	ock Foota	age	No. Of S	ample	s	No. Core	e Boxes	Dep	th to Wa	ater	Date Measured
F	Rotary \	Wash	3.75"		67		0		3				-				
D	rilling Co	mpany	Braun Intertec						Drillers (s) C.	. Cre	ews					
D	rilling Rig	g Ardo	co Model K 4x4	1					Type of Sampler			Split Sp	oon, S	helby T	ube		
D	ate 2-	14-19		То	2-14-19			1	Field Ob	server	(s)	M. Pih	l				
								Blo	w	Ru	un/	Sample	PI	D (ppr	n)		Remarks/
	Depth			Descri	ption		Class	Cou	nt Reco	. Tir	ne	Desig.	ΒZ	BH	S	Sn	Water Levels
TAL LOG. BORING LOGS 107608 VICTORIA LANDFILL.GPJ. WILLIAMS.GDT 11/7/21	$\begin{array}{c} 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 11 \\ 11 \\ 12 \\ 11 \\ 11 \\ 12 \\ 11 \\ 11 \\ 11 \\ 12 \\ 11 \\$	CLA plast	Y, black (10YR 2/1 icity, trace roots D with clay, very p to moist, dense, t les, iron staining), dam	p to moist, hig own (10YR 7/4 calcareous	 h	- CH	NA 4/ 6/ 9 NA 5/ 6/ 7	A / 3 1.17/ A / 3 1.08/ A / 3	22		EB-24 3-5 8-10			DAVID S		BARKER
ENVIRONMENT	13							6/							× ^E	BUR	
	Pe	rmit App	lication 1522B				Attachm	nent 5	-175				R	evision	0, Marc	n 28,	2022

							Borin	ng Numbe	r EB	3-24
Project N	ame City of Victoria Landfill Expansion						Page	e	2 of	5
Project N	umber 107608						Date		2-14	-19
							Р	PID (ppr	n)	
Depth	Description	Class	Blow Count	Recov.	Run/ Time	Sample Desig.	BZ	вн	s	Remarks/ Water Levels
	SAND with clay, very pale brown (10YR 7/4),	SC	7/	1.25/ 2						_
=	damp to moist, dense, trace calcareous		8			13 - 15				
15-										
=										-
=										_
16-										
=			NA	/ 3						-
17-										
=										-
										-
18	CLAY with sand, light brownish gray (10YR	- CL								
=	6/2), damp to moist, stiff, trace manganese oxide staining, with iron staining									
19			5/ 6/	1.66/ 2		18 20				
=			9			10 - 20				
										-
20										
=										-
21-										
=			NA	/ 3						-
				, -						-
22										
=										-
23-										
-			5/	1 25/ 2						-
24			11	1.23/2		23 - 25				-
										-
25—										
26-										
			NA	/3						
27-										
28-										
	SAND with clay, light yellowish brown (10YR 6/4), damp to moist, very fine to fine grained.	SC								Sample collected _ for ASTM D422 _
	some iron staining		8/							
29-			11/	0.83/2		EB-24 28 - 30				
30-										
										-
31 -			I NA							-
	1	1	ļ	1					A F	
_		• • •	. = .				-			MCDONNELL
P	ermit Application 1522B	Attachn	nent 5-1	76			F	Revision	0, Marc	n 28, 2022

							Borin	ng Numbe	er EB	3-24
Project Na	ame City of Victoria Landfill Expansion						Page)	3 of	5
Project Nu	umber 107608						Date		2-14	I-19
Depth	Description	Class	Blow Count	Recov.	Run/ Time	Sample Desig.	P BZ	ID (pp вн	m) s	Remarks/ Water Levels
				/ 3				•	•	
32			NA							
33-	CLAY with sand, light yellowish brown (10YR 6/4), damp to moist, soft, trace plasticity, with	CL								33-35 Shelby Tube
34-	iron staining		-/ -/	2/ 2		EB-24 33 - 35				Samples collected
35-										for ASTM D2216 - and D5084 - -
			NA	/ 3						
37										
38	trace manganese nodules and manganese oxide staining									
39-			6/ 8/ 10	1.83/ 2		38 - 40				-
40										
41 - 1 41 - 1										
			NA	/ 3						-
	CLAY with sand, light gray (10YR 7/2), damp to moist, trace calcareous nodules	CL.	6/							
			7/ 7	2/ 2		43 - 45				
45 1										
MENTAL LC			NA	/ 3						
ENVIRON										-
Pe	ermit Application 1522B	Attachn	nent 5-1	77			F	Revision	0, Marc	BURNS MCDONNELL

								Borin	ig Number	EB	-24
	Project Na	ame City of Victoria Landfill Expansion						Page)	4 of	5
	Project Nu	umber 107608		-		-		Date		2-14	-19
	Depth	Description	Class	Blow Count	Recov.	Run/ Time	Sample . Desig.	Р вz	ID (ppn	ו) s	Remarks/ Water Levels
ŀ		SAND, light yellowish brown (10YR 6/4),	SP						ļļ		-
	_	damp to moist, fine grained		10/							-
	49			10/	0.83/2		10 50				-
	_			13			40 - 30				-
											-
	50										-
	_										-
	51										
				NA	/ 3						-
	52										-
											-
	_										-
	53-	SAND, gray (10YR 6/1), damp to moist, fine to	SP-								
	=	medium grained		451							-
	54—			20/	0.66/ 2		53 - 55				-
	=			22			00-00				-
											-
	55										-
	_										-
	56										
	_			NA	/ 3						-
	57—										-
21											-
11/7/											-
GDT	58	fine to coarse grained, some pebbles,									-
IAMS	3			8/							-
MILL	59—			10/	0.33/ 2		58 - 60				
GPJ	_			10							-
DFILL	60-										-
LAN											-
TORIA											-
3 VICI	61										
07608	=			NA	/ 3						-
GS 1	62										
NG LC	Ξ										-
BORIN	63										-
90	⁰⁰ =										-
TALL				17/							-
JMEN	64-			21/ 25	0.5/ 2		63 - 65				
/IRON											-
Ń	65 -										-
										X [₿]	
	Pe	rmit Application 1522B	Attachm	nent 5-1	78			F	Revision (), March	28, 2022

								Borin	g Numbe	r EB	3-24
Proje	ect Name City of Victoria Landfill Expansion								•	5 of	5
Proje	ct Number 107608							Date		2-14	-19
Dep	oth De	escription	Class	Blow Count	Recov.	Run/ Time	Sample Desig.	P _{BZ}	ID (ppr вн	n) s	Remarks/ Water Levels
66	SAND, gray (10YR 6/1), c coarse grained, some pel grains	lamp to moist, fine to obles, multicolor	SP	17/ 30/ 32	/ 2		65 - 67		•	-	
67	Bottom of Boring @ 67'										
68											Installed
70											
71											
72											
74											
76 MITI ADEIITT.GPJ WITI											
808 VICTORIA LA											
52 107t											
08 MENTAL LOG BO											
ENVIRON											
	Permit Application 1522B		Attachm	ent 5-17	79			F	Revision	0, Marc	

APPENDIX 5D – PIEZOMETER CONSTRUCTION DIAGRAMS AND TEXAS WATER DEVELOPMENT BOARD SUBMITTED DRILLERS REPORTS

Permit Application 1522B

Permit Application 1522B

STATE OF TEXAS WELL REPORT for Tracking #553093									
Owner:	TSI Laboratories,Inc.	Owner Well #:	EB-01						
Address:	1810 South Laurent St. Victoria TX 77901	Grid #:	80-17-6						
Well Location:	18545 FM 1686	Latitude:	28° 41' 38.99" N						
	Victoria, TX 77905	Longitude:	096° 53' 37.68" W						
Well County:	Victoria	Elevation:	No Data						
Type of Work:	New Well	Proposed Use:	Monitor						

Drilling Start Date: 1/29/2019 Drilling End Date: 1/29/2019

	Diameter (in	.) Тор	Depth (ft.)	Bottom Dep	th (ft.)						
Borehole:	6		0	65							
Drilling Method:	Mud (Hydraulic)	ud (Hydraulic) Rotary									
Borehole Completion:	Straight Wall	light Wall									
	Top Depth (ft.)	Bottom Depth (ft.)	De	scription (number of sa	acks & material)						
Annular Seal Data:	0	2		Concrete 1 Bag	s/Sacks						
	2	8		Grout 0.5 Bags	s/Sacks						
	8	35		Sand 10 Bags	/Sacks						
Seal Method: Slu	ırry	Distance to Property Line (ft.): No Data									
Sealed By: Dr	iller	er Distance to Septic Field or other concentrated contamination (ft.): N/A									
			Distance to	Septic Tank (ft.):	No Data						
			Metho	d of Verification: N	No Data						
Surface Completion:	Surface Slab Ins	talled	S	urface Completio	on by Driller						
Water Level:	No Data										
Packers:	No Data										
Type of Pump:	No Data										
Well Tests:	Unknown	No Test Data	Specified								
	Descripti	ion (number of sacks & r	naterial)	Top Depth (ft.)	Bottom Depth (ft.)						
Plug Information:		sand		35	65						

	Strata Depth (ft.)	Water Type						
Water Quality:	No Data	No Data						
		Chemical Analysis Made	э: No					
	Did the driller k	nowingly penetrate any strata whick contained injurious constituents	ו ?: No					
Certification Data: The driller certified that the driller drilled this well (or the well was drilled under the driller's direct supervision) and that each and all of the statements herein are true and correct. The driller understood that failure to complete the required items will result in the report(s) being returned for completion and resubmittal.								
Company Information:	Braun Intertec Cor	oration						
	2120 Brandon Driv Tyler, TX 75703	e						
Driller Name:	David Rogers	License	Number:	52037				
Comments:	Eric McClanahan T were put in over a	alked with Mr. David Gunn about year ago	wells on 06	6/23/20 being that they				

Lithology: DESCRIPTION & COLOR OF FORMATION MATERIAL

Top (ft.)	Bottom (ft.)	Description
0	5	fat clay with calc.
5	7	lean clay with calc.
7	15	moist with sands
15	28	silty sand
28	57	clayey sand
57	65	clayey sand with gravel

Casing: BLANK PIPE & WELL SCREEN DATA

Dla (in.)	Туре	Material	Sch./Gage	Top (ft.)	Bottom (ft.)
2	Riser	New Plastic (PVC)	40	0	20
2	Screen	New Plastic (PVC)	40 0.010	20	30
2	Blank	New Plastic (PVC)	40	30	35

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.

)wner:	TSI	Owner Well #:	EB-08
ddress:	1810 South Louront St	Grid #:	80-17-6
	Victoria, TX 77901	Latitude:	28° 41' 21.48" N
Vell Location:	18545 FM 1686 Victoria, TX 77905	Longitude:	096° 53' 48.19" W
Vell County:	Victoria	Elevation:	No Data
ype of Work:	New Well	Proposed Use:	Monitor

Bottom Depth (ft.) Diameter (in.) Top Depth (ft.) Borehole: 6 0 67 Mud (Hydraulic) Rotary **Drilling Method:** Straight Wall **Borehole Completion:** Top Depth (ft.) Bottom Depth (ft.) Description (number of sacks & material) Annular Seal Data: 0 2 **Concrete 1 Bags/Sacks** 2 8 Grout 0.5 Bags/Sacks 8 10 **Bentonite 1 Bags/Sacks** 10 35 Sand 10 Bags/Sacks Seal Method: Poured Distance to Property Line (ft.): No Data Sealed By: Driller Distance to Septic Field or other concentrated contamination (ft.): N/A Distance to Septic Tank (ft.): No Data Method of Verification: No Data Surface Completion: **Surface Slab Installed** Surface Completion by Driller Water Level: No Data Packers: No Data Type of Pump: No Data Well Tests: Bailer No Test Data Specified Description (number of sacks & material) Top Depth (ft.) Bottom Depth (ft.) Plug Information: sand 35 67

Well Report Tracking Number 553096 Astabhmitted 5rt \$\$4/2020

	Strata Depth (ft.)	Water Type			
Water Quality:	No Data	No Data			
		Chemical Analysis Made:	Yes		
	Did the driller	knowingly penetrate any strata which contained injurious constituents?:	Νο		
Certification Data:	The driller certified th driller's direct supervi correct. The driller u the report(s) being re	at the driller drilled this well (or the well ision) and that each and all of the state nderstood that failure to complete the r trurned for completion and resubmittal.	l was drille ments he equired ite	ed under the rein are true an ems will result i	ıd in
Company Information:	Braun Intertec Cor	roration			
	2120 Brandon Driv Tyler, TX 75703	/e			
Driller Name:	David R. Rogers	License N	lumber:	52037	
Comments:	Eric McClanahan s were done over a g	spoke with Mr. David Gun on 6/23/20 year ago.	20 about	the wells sinc	e they

Lithology: DESCRIPTION & COLOR OF FORMATION MATERIAL

Top (ft.)	Bottom (ft.)	Description
0	7	lean clay, moist
7	14	moist with some sand
14	27	clayey sand
27	35	silty sand with calc.
35	57	clayey sand
57	67	same with calc.

Casing: BLANK PIPE & WELL SCREEN DATA

Dla (in.)	Туре	Material	Sch./Gage	Top (ft.)	Bottom (ft.)
2	Riser	New Plastic (PVC)	40	0	10
2	Screen	New Plastic (PVC)	40 0.010	10	30
2	Blank	New Plastic (PVC)	40	30	35

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.

STATE OF TEXAS WELL REPORT for Tracking #553105					
Owner:	TSI Laboratories, Inc.	Owner Well #:	EB-11		
Address:	1810 South Laurent St. Victoria TX 77901	Grid #:	80-17-6		
Well Location:	18545 FM1686	Latitude:	28° 41' 20.75" N		
	Victoria, TX 77905	Longitude:	096° 54' 06.46" W		
Well County:	Victoria	Elevation:	No Data		
Type of Work:	New Well	Proposed Use:	Monitor		

Drilling Start Date: 2/12/2019 Drilling End Date: 2/12/2019

	Diameter (in.,)	Top De	epth (ft.)	Bottom Dept	th (ft.)	
Borehole:	6			0	65		
Drilling Method:	Mud (Hydraulic)	Rotary					
Borehole Completion:	Straight Wall						
	Top Depth (ft.)	Bottom	n Depth (ft.)	Desc	cription (number of sa	acks & material)	
Annular Seal Data:	0		2		Concrete 1 Bag	s/Sacks	
	2		8		Grout 0.5 Bags	/Sacks	
	8		10		Bentonite 1 Bag	s/Sacks	
	10		35		Sand 10 Bags	/Sacks	
Seal Method: Po	ured		Di	stance to Pro	perty Line (ft.): N	lo Data	
Sealed By: Driller Distance to Septic Field or other concentrated contamination (ft.): N/A					N/A		
			I	Distance to S	eptic Tank (ft.): N	lo Data	
				Method	of Verification: N	lo Data	
Surface Completion:	Surface Slab Installed			Su	Surface Completion by Driller		
Water Level:	No Data						
Packers:	No Data						
Type of Pump:	No Data						
Well Tests:	No Test Data Sp	ecified					
	Descriptio	on (number	of sacks & ma	terial)	Top Depth (ft.)	Bottom Depth (ft.)	
Plug Information:		sa	nd		35	65	

	Strata Depth (ft.)	Water Type			
Water Quality:	No Data	No Data			
		Chemical Analysis Made	Yes		
	Did the driller k	knowingly penetrate any strata which contained injurious constituents?	No		
Certification Data:	The driller certified that driller's direct supervis correct. The driller un the report(s) being re	at the driller drilled this well (or the we sion) and that each and all of the stat nderstood that failure to complete the turned for completion and resubmittal	I was drill ements he required it	ed under the rein are true anc ems will result ir	t I
Company Information:	Braun Intertec Cor	roration			
	2120 Brandon Driv Tyler, TX 75703	/e			
Driller Name:	David R. Rogers	License	Number:	52037	
Comments:	Eric McClanahan s reports since they	spoke with Mr. David Gunn on 6/23/ are over a year old.	'20 about d	doing these we	II

Report Amended on 9/7/2020 by Request #32631

Lithology: DESCRIPTION & COLOR OF FORMATION MATERIAL Casing: BLANK PIPE & WELL SCREEN DATA

0 5 fat clay 2 Riser New Plastic 40 0	5	0						, , ,	(†t.)
		U	fat clay	2	Risor	New Plastic	40	0	10
5 14 lean clay with calc. (PVC)	14	5	lean clay with calc.	-		(PVC)		0	10
1422clayey sand2ScreenNew Plastic40 (PVC)10	22	14	clayey sand	2	Screen	New Plastic (PVC)	40 0.010	10	30
22 65 same with calc. 2 Blank New Plastic 40 30	65	22	same with calc.	2	Blank	New Plastic	40	30	35

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.

STATE OF TEXAS WELL REPORT for Tracking #553118					
Owner:	TSI Laboratories, Inc.	Owner Well #:	EB-17		
Address:	1810 South Laurent St. Victoria TX 77901	Grid #:	80-17-6		
Well Location:	18545 FM1686	Latitude:	28° 41' 01.36" N		
	Victoria, TX 77905	Longitude:	096° 54' 19.58" W		
Well County:	Victoria	Elevation:	No Data		
Type of Work:	New Well	Proposed Use:	Monitor		

Drilling Start Date: 2/15/2019 Drilling End Date: 2/15/2019

	Diameter (in.) To	op Depth (ft.)	Bottom Dep	th (ft.)	
Borehole:	6 0		0	85		
Drilling Method:	Mud (Hydraulic)	Rotary				
Borehole Completion:	Straight Wall					
	Top Depth (ft.)	Bottom Depth (ft.) De	escription (number of s	acks & material)	
Annular Seal Data:	0	2		Concrete 1 Bags/Sacks		
	2	8	8 Grout 0.		s/Sacks	
	8	35		Sand 10.5 Bag	s/Sacks	
Seal Method: Po	ured		Distance to P	roperty Line (ft.):	No Data	
Sealed By: Dr	iller	C c	Distance to Septon concentrated co	tic Field or other ontamination (ft.): I	No Data	
			Distance to	Septic Tank (ft.):	No Data	
			Metho	od of Verification:	No Data	
Surface Completion:	Surface Slab Installed			Surface Completion by Driller		
Water Level:	No Data					
Packers:	No Data					
Type of Pump:	No Data					
Well Tests:	No Test Data Sp	pecified				
	Descripti	on (number of sacks &	& material)	Top Depth (ft.)	Bottom Depth (ft.)	
Plug Information:		sand		35	85	

	Strata Depth (ft.)	Water Type			
Water Quality:	No Data	No Data			
		Chemical Analysis Made:	Yes		
	Did the driller k	nowingly penetrate any strata which contained injurious constituents?:	No		
Certification Data:	The driller certified tha driller's direct supervis correct. The driller un the report(s) being ret	at the driller drilled this well (or the we sion) and that each and all of the state iderstood that failure to complete the surned for completion and resubmittal.	II was drill ements he required it	ed under the rein are true and ems will result in	
Company Information:	Braun Intertec Cor	oration			
	2120 Brandon Driv Tyler, TX 75703	e			
Driller Name:	David R. Rogers	License	Number:	52037	
Comments:	Eric McClanahan s they are over a yea	poke with Mr. David Gunn about th r old since they were put in	is well on	n 6/23/2020 being th	at

Lithology: DESCRIPTION & COLOR OF FORMATION MATERIAL

Top (ft.)	Bottom (ft.)	Description
0	5	fat clay
5	10	lean clay
10	20	sand
20	25	lean clay
25	29	silty sand
29	43	lean clay
43	71	clayey sand with calc,
71	85	clayey sand

Casing: BLANK PIPE & WELL SCREEN DATA

Dla (in.)	Туре	Material	Sch./Gage	Top (ft.)	Bottom (ft.)
2	Riser	New Plastic (PVC)	40	0	10
2	Screen	New Plastic (PVC)	40 0.010	10	30
2	Blank	New Plastic (PVC)	40	30	35

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.

STATE OF TEXAS WELL REPORT for Tracking #553140				
Owner:	TSI Laboratories, Inc.	Owner Well #:	EB-19	
Address:	1810 South Laurent St. Victoria TX 77901	Grid #:	80-17-6	
Well Location:	18545 FM 1686	Latitude:	28° 41' 04.72" N	
	Victoria, TX 77905	Longitude:	096° 54' 32.01" W	
Well County:	Victoria	Elevation:	No Data	
Type of Work:	New Well	Proposed Use:	Monitor	

Drilling Start Date: 2/14/2019 Drilling End Date: 2/14/2019

	Diameter (in.)	Top De	epth (ft.)	Bottom Dept	th (ft.)
Borehole:	6			0	90	
Drilling Method:	Mud (Hydraulic)	Rotary				
Borehole Completion:	Straight Wall					
	Top Depth (ft.)	Botton	n Depth (ft.)	Des	cription (number of sa	acks & material)
Annular Seal Data:	0		2		Concrete 1 Bag	s/Sacks
	2		8		Grout 0.5 Bags	/Sacks
	8		10		Bentonite 1 Bag	s/Sacks
	10		35		Sand 10.5 Bags	s/Sacks
Seal Method: Po	Seal Method: Poured Distance to Property Line (ft.): No Data					
Sealed By: Dr	iller		Dista conc	nce to Septic entrated con	Field or other tamination (ft.):	N/A
			I	Distance to S	eptic Tank (ft.): N	lo Data
				Method	of Verification: N	lo Data
Surface Completion:	Surface Slab Inst	alled		Su	rface Completio	n by Driller
Water Level:	No Data					
Packers:	No Data					
Type of Pump:	No Data					
Well Tests:	No Test Data Sp	ecified				
	Descriptio	on (number	of sacks & ma	terial)	Top Depth (ft.)	Bottom Depth (ft.)
Plug Information:		sa	nd		35	90

	Strata Depth (ft.)	Water Type			
Water Quality:	No Data	No Data			
		Chemical Analysis Made:	Yes		
	Did the driller k	nowingly penetrate any strata which contained injurious constituents?:	Νο		
Certification Data:	The driller certified that driller's direct supervise correct. The driller un the report(s) being ref	at the driller drilled this well (or the well sion) and that each and all of the state inderstood that failure to complete the r turned for completion and resubmittal.	l was drill ments he equired it	ed under the rein are true and ems will result ir	ל ר
Company Information:	Braun Intertec Cor	oration			
	2120 Brandon Driv Tyler, TX 75703	e			
Driller Name:	David R. Rogers	License N	lumber:	52037	
Comments:	Eric McClanahan s on 06/23/2020	poke to Mr. David Gunn about well	report th	at is over a yea	ır old

Lithology: DESCRIPTION & COLOR OF FORMATION MATERIAL

Top (ft.)	Bottom (ft.)	Description
0	5	fat clay
5	10	lean clay
10	14	silty sand
14	22	clayey sand
22	29	silt sand
29	40	clayey sand
40	64.5	silty sand
64.5	71.5	lean clay
71.5	90	same with sand

Casing: BLANK PIPE & WELL SCREEN DATA

Dla (in.)	Туре	Material	Sch./Gage	Top (ft.)	Bottom (ft.)
2	Riser	New Plastic (PVC)	40	0	10
2	Screen	New Plastic (PVC)	40 0.010	10	30
2	Blank	New Plastic (PVC)	40	30	35

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.

STATE OF TEXAS WELL REPORT for Tracking #553141				
Owner:	TSI Laboratocries, Inc.	Owner Well #:	EB-24	
Address:	1810 South Laurent St. Victoria TX 77901	Grid #:	80-17-6	
Well Location:	18545 FM 1686	Latitude:	28° 41' 36.79" N	
	Victoria, TX 77905	Longitude:	096° 54' 24.51" W	
Well County:	Victoria	Elevation:	No Data	
Type of Work:	New Well	Proposed Use:	Monitor	

Drilling Start Date: 2/14/2019 Drilling End Date: 2/14/2019

	Diameter (in.))	Top De	epth (ft.)	Bottom Dept	h (ft.)
Borehole:	6			0	65	
Drilling Method:	Mud (Hydraulic)	Rotary				
Borehole Completion:	Straight Wall					
	Top Depth (ft.)	Botton	n Depth (ft.)	Des	cription (number of sa	ncks & material)
Annular Seal Data:	0		2		Concrete 1 Bag	s/Sacks
	2		8		Grout 0.5 Bags	/Sacks
	8		10		Bentonite 1 Bag	s/Sacks
	10		35		Sand 10 Bags	/Sacks
Seal Method: Poured Distance to Property Line (ft.): No Data						
Sealed By: Dr	Sealed By: Driller Distance to Septic Field or other concentrated contamination (ft.): N/A					
			Γ	Distance to S	eptic Tank (ft.): N	lo Data
				Method	of Verification: N	lo Data
Surface Completion:	Surface Slab Inst	alled		Su	rface Completio	n by Driller
Water Level:	No Data					
Packers:	No Data					
Type of Pump:	No Data					
Well Tests:	No Test Data Sp	ecified				
	Descriptio	on (number	of sacks & mat	erial)	Top Depth (ft.)	Bottom Depth (ft.)
Plug Information:		sa	nd		35	65

	Strata Depth (ft.)	Water Type			
Water Quality:	No Data	No Data			
		Chemical Analysis Made	: Yes		
	Did the driller k	nowingly penetrate any strata which contained injurious constituents?	: No		
Certification Data:	The driller certified that driller's direct supervis correct. The driller un the report(s) being ret	at the driller drilled this well (or the we sion) and that each and all of the stat derstood that failure to complete the urned for completion and resubmitta	ell was drille ements her required ite I.	ed under the rein are true and ems will result in	
Company Information:	Braun Intertec Core	oration			
	2120 Brandon Drive Tyler, TX 75703	e			
Driller Name:	David R. Rogers	License	Number:	52037	
Comments:	Eric McClanahan s a year old	poke with Mr. David Gunn on 6/23	/2020 abou	ut this well that is ove	۶r

Lithology: DESCRIPTION & COLOR OF FORMATION MATERIAL

Casing: BLANK PIPE & WELL SCREEN DATA

Top (ft.)	Bottom (ft.)	Description	Dla (in.)
0	5	lean clay	
5	14	clayey sand	2
14	35.5	lean clay	2
35.5	42	clayey sand	2
42	65	same with different grains	

Dla (in.)	Туре	Material	Sch./Gage	Top (ft.)	Bottom (ft.)
2	Riser	New Plastic (PVC)	40	0	10
2	Screen	New Plastic (PVC)	40 0.010	10	30
2	Blank	New Plastic (PVC)	40	30	35

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.

APPENDIX 5E – GEOTECHNICAL LABORATORY REPORTS

Tested By: ST

Tested By: ST

Tested By: KY

TSI LABORATORIES, INC.

TBPE Firm Registration No: F-9236 1810 SOUTH LAURENT VICTORIA, TEXAS 77901 PHONE (361) 578-6933

HYDRAULIC CONDUCTIVITY (ASTM D 5084)

Using Falling-Head Apparatus (Method C)

Project Name:			Victoria Landfill Expansion						Client:		
Sample Location:			EB-06 13-15'						File No.:	V-191007	
Description of Soil:			Clay						Lab Report:		
Type of	f Specim	en:	Undisturbed							Sample No:	1
Back Pr	ressure S	Saturation C	onditions: B Coefficient							> or =	= 0.95
Consoli	dation a	nd Permeat	ion Condi	tior	ns:	Effective Stress, psi:				=	8.0
Pipet L	Lp (cm)	11.250	in	28.575 cm	Pipet Area, a (25.000 cm ³ /Lp)			³ /Lp)	=	0.875 cm^2	
			Specific Gravity of Water, G						r, G _W	=	1.003
SPECIMEN DIMENSIONS AND PROPERTIES											
Item			Initial					Final			
			Input Da	nta	Cor. Factor	Output Da	nta	Input Da	ata	Cor. Factor	Output Data
Sample Diameter			2.85	in	2.54	7.24	cm	2.85	in	2.54	7.24 cm
Sample Area			6.38	in	•	41.16	cm^2	6.38			41.16 cm^2
Sample Length			1.66	in	2.54	4.22	cm	1.66	in	2.54	4.22 cm
Tare Number			1					2			
Tare Weight (gm)			154.70					132.10			
Wet Soil + Tare (gm)			302.00					326.2			
Dry Soil + Tare (gm)			268.30					274.60			
Water Weight (gm)					•	33.70					51.60
Dry Soil Weight (gm)						113.60					142.50
Moisture Content (%)						29.7					36.2
Wet Soil Weight (gm)			321.10			-		328.90			-
Wet Density (pcf)						115.5					118.3
Dry Density (pcf)						89.1					86.9
Saturation (%)						89.9		<u> </u>		-	104.1
Specific Gravity		2.70					TESTED			ASSUMED X	
HYDRAULIC CONDUCTIVITY TESTING MEASUREMENT											
Confining Pressure (psi)			70.3		Influent Pres	sure (psi)		65 Effluen		t Press. (psi)	63.8
Reset?	? Meas. Time		ha _{out}		ha _{in}	Temperate	ure	Gradie	ent	k	k ₂₀
1=Yes	Date	Time	(cm)		(cm)	(°C)		Min.	Max.	(cm/s)	(cm/s)
1	02/14	17:00:00	4.66		3.34	24.0		8	34		
	02/15	17:15:00	3.66		4.26	24.0		20	-	1.3E-08	1.2E-08
	02/16	23:25:00	2.28		5.60	24.0		10		1.6E-08	1.4E-08
	02/17	13:20:00	1.86		6.10	24.0		10		1.2E-08	1.1E-08
	02/18	08:10:00	1.30		6.68	24.0		19		1.1E-08	9.9E-09
AVERAGE VALUES							20		1.3E-08	1.2E-08	

Calculated by: Tom Paez

Tom Pag

Date: 3/18/19

Tested By: ST

Tested By: KY

Tested By: KY

TBPE Firm Registration No: F-9236 1810 SOUTH LAURENT VICTORIA, TEXAS 77901 PHONE (361) 578-6933

HYDRAULIC CONDUCTIVITY (ASTM D 5084)

Using Falling-Head Apparatus (Method C)

Project Name: Victoria Landfill Ex						ansion				Client:		
Sample	Locatio	n:	EB-06	78	-80'					File No.:	V-191007	
Descrip	tion of S	Soil:	Clay							Lab Report:		
Type of	Specim	en:	Undistu	ırbe	ed					Sample No:	1	
Back Pr	ressure S	Saturation C	Conditions	:		B Coeffici	ient			> or =	= 0.95	
Consoli	dation a	nd Permeat	ion Condi	tior	ns:	Effective S	Stress	, psi:		=	8.0	
Pipet L	ength, 1	Lp (cm)	11.250	in	28.575 cm	Pipet Area	a, a (2	5.000 cm	³ /Lp)	=	$= 0.875 \text{ cm}^2$	
						Specific C	Bravit	y of Water	r, G _w	=	1.003	
			-		SPECIMEN	N DIMENS	SION	S AND P	ROPER	TIES		
	Item				Initial			Final				
			Input Da	ıta	Cor. Factor	Output Da	nta	Input Da	ata	Cor. Factor	Output Data	
Sample Diameter			2.87	in	2.54	7.29	cm	2.87	in	2.54	7.29 cm	
Sample Area			6.47	in		41.74	cm^2	6.47			41.74 cm^2	
Sample Length			2.65	in	2.54	6.73	cm	2.65	in	2.54	6.73 cm	
Tare Number			1					2				
Tare Weight (gm)			131.90					195.20				
Wet Soil + Tare (gm)			312.30					255.7				
Dry Soil + Tare (gm)			288.80					247.00				
Water V	Weight (gm)				23.50					8.70	
Dry Soi	l Weigh	t (gm)				156.90					51.80	
Moistur	e Conte	nt (%)				15.0					16.8	
Wet So	il Weigh	nt (gm)	590.30					597.30			-	
Wet De	nsity (po	cf)				131.2					132.7	
Dry De	nsity (po	cf)				114.1					113.6	
Saturati	on (%)					84.8				_	94.0	
Specific	c Gravity	у	2.70					TESTED			ASSUMED X	
		H	YDRAU	LIC	CONDUCT	TVITY TI	ESTI	NG MEA	SUREM	IENT		
Confini	ng Press	sure (psi)	69.9		Influent Pres	sure (psi)		64.8	Effluen	t Press. (psi)	63.7	
Reset?	Meas	s. Time	ha _{out}		ha _{in}	Temperatu	ure	Gradie	ent	k	k ₂₀	
1=Yes	Date	Time	(cm)		(cm)	(°C)		Min.	Max.	(cm/s)	(cm/s)	
1	02/13	16:54:00	8.96		0.74	24.0		8	34			
	02/14	17:00:00	3.44		6.20	24.0		11		1.3E-07	1.2E-07	
	02/15	10:00:00	1.72		7.94	24.0		10		6.3E-08	5.7E-08	
	02/15	17:15:00	1.28		8.34	24.0		10		3.7E-08	3.4E-08	
02/16 08:15:00			0.62		9.00	24.0		10		2.9E-08	2.6E-08	
AVERAGE VALUES								14		6.4E-08	5.8E-08	

Calculated by: Tom Paez

Tom Pag

Date: 3/18/19

Tested By: ST

TBPE Firm Registration No: F-9236 1810 SOUTH LAURENT VICTORIA, TEXAS 77901 PHONE (361) 578-6933

HYDRAULIC CONDUCTIVITY (ASTM D 5084)

Using Falling-Head Apparatus (Method C)

Project	Name:		Victoria	a L	andfill Exp	ansion				Client:	
Sample	Locatio	n:	EB-08 (33-	35'					File No.:	V-191007
Descrip	otion of S	Soil:	Clay							Lab Report:	
Type of	f Specim	en:	Undistu	ırbe	ed					Sample No:	1
Back Pr	ressure S	Saturation C	Conditions	:		B Coeffic	ient			> or	= 0.95
Consoli	idation a	nd Permeat	ion Condi	tior	ns:	Effective	Stress	, psi:		=	= 8.0
Pipet L	ength, 1	Lp (cm)	11.250	in	28.575 cm	Pipet Area	a, a (2	5.000 cm	³ /Lp)	=	$= 0.875 \text{ cm}^2$
						Specific C	Bravit	y of Water	r, G _W	=	= 1.003
					SPECIMEN	N DIMENS	SION	S AND P	ROPER	TIES	
	Item				Initial					Final	
			Input Da	ita	Cor. Factor	Output Da	ata	Input Da	ata	Cor. Factor	Output Data
Sample Diameter			2.81	in	2.54	7.14	cm	2.81	in	2.54	7.14 cm
Sample Area			6.20	in		40.01	cm^2	6.20			40.01 cm^2
Sample Length			1.70	in	2.54	4.32	cm	1.70	in	2.54	4.32 cm
Tare Number			1					2			
Tare Weight (gm)			128.90					100.00			
Wet Soil + Tare (gm)			347.40					462.9			
Dry Soil + Tare (gm)			320.80					411.60			
Water V	Weight (gm)				26.60					51.30
Dry Soi	il Weigh	t (gm)				191.90					311.60
Moistur	re Conte	nt (%)				13.9					16.5
Wet So	il Weigh	ıt (gm)	360.20			-		363.20			-
Wet De	ensity (po	cf)			•	130.2					131.2
Dry De	nsity (pc	:f)				114.3					112.7
Saturati	ion (%)					79.0					89.8
Specific	c Gravity	/	2.70			-		TESTED			ASSUMED X
		Н	YDRAU	LIC	CONDUCT	TVITY TI	ESTI	NG MEA	SUREM	IENT	
Confini	ng Press	ure (psi)	70.3		Influent Pres	sure (psi)		65.3	Effluen	t Press. (psi)	63.8
Reset?	Meas	. Time	ha _{out}		ha _{in}	Temperate	ure	Gradie	ent	k	k ₂₀
1=Yes	Date	Time	(cm)		(cm)	(°C)		Min.	Max.	(cm/s)	(cm/s)
1	02/28	13:12:00	5.44		4.24	24.0		8	34		
	02/28	13:59:00	0.68		8.92	24.0		22	-	1.8E-06	1.6E-06
1	02/28	15:29:00	5.30		4.40	24.0		10			
	02/28	15:45:00	2.66		6.98	24.0		10		2.8E-06	2.6E-06
02/28 16:00:00		1.22		8.44	24.0		23		1.8E-06	1.6E-06	
AVERAGE VALUES								22		2.1E-06	1.9E-06

Calculated by: Tom Paez

Tom Pag

Date: 3/18/19

TBPE Firm Registration No: F-9236 1810 SOUTH LAURENT VICTORIA, TEXAS 77901 PHONE (361) 578-6933

HYDRAULIC CONDUCTIVITY (ASTM D 5084)

Using Falling-Head Apparatus (Method C)

Project	Name:		Victoria	a L	andfill Exp	ansion				Client:	
Sample	Locatio	n:	EB-11	33	-35'					File No.:	V-191007
Descrip	tion of S	Soil:	Clay							Lab Report:	
Type of	f Specim	en:	Undistu	ırbe	ed					Sample No:	1
Back Pa	ressure S	Saturation C	Conditions	:		B Coeffic	ient			> or =	= 0.95
Consoli	dation a	nd Permeat	ion Condi	tior	ns:	Effective	Stress	, psi:		=	8.0
Pipet L	ength, 1	Lp (cm)	11.250	in	28.575 cm	Pipet Area	a, a (2	5.000 cm	=	0.875 cm^2	
						Specific C	Bravity	y of Wate	r, G _w	=	1.003
					SPECIMEN	N DIMENS	SION	S AND P	ROPER	TIES	
Item					Initial					Final	
			Input Da	nta	Cor. Factor	Output Da	ata	Input D	ata	Cor. Factor	Output Data
Sample	Diamet	er	2.76	in	2.54	7.01	cm	2.76	in	2.54	7.01 cm
Sample Area			5.98	in		38.60	cm^2	5.98			38.60 cm^2
Sample Length			1.26	in	2.54	3.20	cm	1.26	in	2.54	3.20 cm
Tare Number			1					2			
Tare W	eight (g	m)	102.50					155.60			
Wet Soil + Tare (gm)			424.60					401.1			
Dry Soil + Tare (gm)			389.70					353.50			
Water V	Weight (gm)				34.90				·	47.60
Dry Soi	il Weigh	t (gm)				287.20					197.90
Moistur	re Conte	nt (%)				12.2					24.1
Wet So	il Weigh	nt (gm)	246.00			-		248.10			
Wet De	ensity (po	ef)				124.3					125.4
Dry De	nsity (pc	cf)				110.8					101.1
Saturati	on (%)					63.1			-	_	97.4
Specific	c Gravity	ý	2.70					TESTED			ASSUMED X
		H	IYDRAU	LIC	C CONDUCT	TIVITY TI	ESTI	NG MEA	SUREM	IENT	
Confini	ng Press	sure (psi)	70.6		Influent Pres	sure (psi)		65	Effluen	t Press. (psi)	63.9
Reset?	Meas	s. Time	ha _{out}		ha _{in}	Temperate	ure	Gradi	ent	k	k ₂₀
1=Yes	Date	Time	(cm)		(cm)	(°C)		Min.	Max.	(cm/s)	(cm/s)
1	03/18	06:35:00	1.98		7.90	24.0		8	34		
	03/18	17:30:00	0.88		9.04	24.0		21	-	3.4E-08	3.1E-08
	03/19	06:30:00	0.04		9.88	24.0		10		2.2E-08	2.0E-08
1	03/21	06:40:00	3.86		5.76	24.0		10			
03/22 06:25:00		0.40		9.64	24.0		21		5.0E-08	4.5E-08	
AVERAGE VALUES								21		3.5E-08	3.2E-08

Calculated by: Tom Paez

Tom Pag

Date: 3/25/19

TBPE Firm Registration No: F-9236 1810 SOUTH LAURENT VICTORIA, TEXAS 77901 PHONE (361) 578-6933

HYDRAULIC CONDUCTIVITY (ASTM D 5084)

Using Falling-Head Apparatus (Method C)

Project	Name:		Victoria	a L	andfill Exp	ansion				Client:			
Sample	Locatio	n:	EB-13	0-2	2'					File No.:	V-191007		
Descrip	tion of S	Soil:	Clay							Lab Report:			
Type of	Specim	en:	Undistu	ırbe	ed					Sample No:	1		
Back Pr	ressure S	Saturation C	Conditions	:		B Coeffic	ient			> or =	= 0.95		
Consoli	dation a	nd Permeat	ion Condi	ition	ns:	Effective	Stress	, psi:		=	8.0		
Pipet Lo	ength, l	Lp (cm)	11.250	in	28.575 cm	Pipet Area	ipet Area, a $(25.000 \text{ cm}^3/\text{Lp}) =$						
						Specific C	Gravit	ity of Water, $G_W = 1.003$					
					SPECIMEN	I DIMEN	SION	S AND P	ROPER	TIES			
	Item				Initial					Final			
			Input Da	ita	Cor. Factor	Output Da	ata	Input Da	ata	Cor. Factor	Output Data		
Sample Diameter			2.79	in	2.54	7.09	cm	2.79	in	2.54	7.09 cm		
Sample Area			6.11	in		39.44	cm^2	6.11			39.44 cm^2		
Sample Length			1.98	in	2.54	5.03	cm	1.98	in	2.54	5.03 cm		
Tare Number			1					2					
Tare Weight (gm)			133.20					136.00					
Wet Soil + Tare (gm)			271.20					346.1					
Dry Soil + Tare (gm)			233.70					285.50					
Water V	Neight (gm)				37.50				•	60.60		
Dry Soi	l Weigh	t (gm)				100.50					149.50		
Moistur	e Conte	nt (%)				37.3					40.5		
Wet So	il Weigh	nt (gm)	345.10					350.70			•		
Wet De	nsity (po	cf)				108.6				-	110.4		
Dry De	nsity (pc	cf)				79.1					78.5		
Saturati	on (%)					89.1					95.6		
Specific	c Gravity	ý	2.70					TESTED			ASSUMED X		
		H	YDRAU	LIC	CONDUCT	TVITY TI	ESTI	NG MEA	SUREN	IENT			
Confini	ng Press	sure (psi)	70.3		Influent Pres	sure (psi)		65.3	Effluen	t Press. (psi)	63.7		
Reset?	Meas	s. Time	ha _{out}		ha _{in}	Temperat	ure	Gradie	ent	k	k ₂₀		
1=Yes	Date	Time	(cm)		(cm)	(°C)		Min.	Max.	(cm/s)	(cm/s)		
1	02/14	17:00:00	8.52		1.04	24.0		8	34				
	02/15	17:15:00	8.26		1.24	24.0		24		2.8E-09	2.5E-09		
	02/16	23:25:00	7.92		1.48	24.0		10		2.8E-09	2.6E-09		
	02/17	13:20:00	7.80		1.62	24.0		10		2.8E-09	2.5E-09		
02/18 08:10:00		7.64		1.78	24.0		24		2.5E-09	2.3E-09			
AVERAGE VALUES								23		2.7E-09	2.5E-09		

Calculated by: Tom Paez

Tom Pag

Date: 3/18/19

Tested By: ST

Tested By: KY

Tested By: KY

Tested By: KY

Tested By: ST

TBPE Firm Registration No: F-9236 1810 SOUTH LAURENT VICTORIA, TEXAS 77901 PHONE (361) 578-6933

HYDRAULIC CONDUCTIVITY (ASTM D 5084)

Using Falling-Head Apparatus (Method C)

Project	Name:		Victoria	a L	andfill Exp	ansion		Client:				
Sample	Locatio	n:	EB-17	85-	87'					File No.:	V-191007	
Descrip	tion of S	Soil:	Clay							Lab Report:		
Type of	f Specim	en:	Undistu	ırbe	ed					Sample No:	1	
Back Pr	ressure S	Saturation C	Conditions	:		B Coeffic	ient			> or =	0.95	
Consoli	dation a	nd Permeat	ion Condi	itior	ns:	Effective	Stress	, psi:		=	8.0	
Pipet L	ength, 1	Lp (cm)	11.250	in	28.575 cm	Pipet Area	a, a (2	5.000 cm	³ /Lp)	=	0.875 cm^2	
						Specific C	Gravit	y of Wate	r, G _w	=	1.003	
			-		SION	IS AND PROPERTIES						
	Item				Initial			Final				
			Input Da	ita	Cor. Factor	Output Da	ata	Input D	ata	Cor. Factor	Output Data	
Sample	Diamete	er	2.82	in	2.54	7.16	cm	2.82	in	2.54	7.16 cm	
Sample	Area		6.25	in	•	40.30	cm^2	6.25			40.30 cm^2	
Sample Length			2.05	in	2.54	5.21	cm	2.05	in	2.54	5.21 cm	
Tare Nu	umber		1					2				
Tare W	eight (g	n)	134.60					87.20				
Wet Soil + Tare (gm)			301.20					517.1				
Dry Soil + Tare (gm)			274.80					436.70				
Water V	Weight (gm)			•	26.40					80.40	
Dry Soi	il Weigh	t (gm)				140.20					349.50	
Moistur	re Conte	nt (%)				18.8					23.0	
Wet So	il Weigh	ıt (gm)	425.00			-		430.10			-	
Wet De	ensity (po	cf)				126.4					128.0	
Dry De	nsity (pc	:f)				106.4					104.0	
Saturati	on (%)					87.2				-	100.3	
Specific	c Gravity	/	2.70					TESTED			ASSUMED X	
		Н	YDRAU	LIC	CONDUCT	TIVITY T	ESTI	NG MEA	SUREM	IENT		
Confini	ng Press	ure (psi)	69.9		Influent Pres	sure (psi)		65.1	Effluen	t Press. (psi)	63.8	
Reset?	Meas	. Time	ha _{out}		ha _{in}	Temperat	ure	Gradie	ent	k	k ₂₀	
1=Yes	Date	Time	(cm)		(cm)	(°C)		Min.	Max.	(cm/s)	(cm/s)	
1	02/28	11:42:00	2.38		8.16	24.0		8	34			
	02/28	12:28:00	1.06		9.48	24.0		16	-	7.4E-07	6.7E-07	
	02/28 12:58:00 0.28 10.00		24.0		10 5.8E-07		5.8E-07	5.2E-07				
1	02/28	15:30:00	2.74		7.00	24.0		10				
02/28 16:00:00		1.90		7.82	24.0		16		7.0E-07	6.3E-07		
AVERAGE VALUES								17		6.7E-07	6.1E-07	

Calculated by: Tom Paez

Tom Pag

Date: 3/18/19

TBPE Firm Registration No: F-9236 1810 SOUTH LAURENT VICTORIA, TEXAS 77901 PHONE (361) 578-6933

HYDRAULIC CONDUCTIVITY (ASTM D 5084)

Using Falling-Head Apparatus (Method C)

Project	Name:		Victoria	a L	andfill Exp	ansion				Client:	
Sample	Locatio	n:	EB-19	33-	35'					File No.:	V-191007
Descrip	tion of S	Soil:	Clay							Lab Report:	
Type of	f Specim	en:	Undistu	ırbe	ed					Sample No:	1
Back Pr	ressure S	Saturation C	Conditions	:		B Coeffic	ient			> or =	= 0.95
Consoli	dation a	nd Permeat	ion Condi	tior	ns:	Effective	Stress	, psi:		=	8.0
Pipet L	ength, 1	Lp (cm)	11.250	in	28.575 cm	Pipet Area	a, a (2	5.000 cm ²	³ /Lp)	=	0.875 cm^2
						Specific C	Gravit	y of Water	r, G _w	=	1.003
					SPECIMEN	N DIMENS	SION	S AND P	ROPER	TIES	
	Item		Initial							Final	
			Input Da	ıta	Cor. Factor	Output Da	ata	Input Da	ata	Cor. Factor	Output Data
Sample Diameter			2.77	in	2.54	7.04	cm	2.78	in	2.54	7.06 cm
Sample Area			6.03	in		38.88	cm^2	6.07			39.16 cm^2
Sample Length			2.14	in	2.54	5.44	cm	2.16	in	2.54	5.49 cm
Tare Number			1					2			
Tare Weight (gm)			133.80					151.70			
Wet Soil + Tare (gm)			404.60					619.5			
Dry Soil + Tare (gm)			367.10					546.30			
Water V	Weight (gm)				37.50					73.20
Dry Soi	il Weigh	t (gm)				233.30					394.60
Moistu	re Conte	nt (%)				16.1					18.6
Wet So	il Weigh	nt (gm)	462.60			-		464.80			
Wet De	ensity (po	cf)				136.7				!!!!!	135.1
Dry De	nsity (pc	:f)				117.7					113.9
Saturati	on (%)					100.7				_	104.6
Specific	c Gravity	ý	2.70					TESTED			ASSUMED X
		Н	YDRAU	LIC	CONDUCT	TVITY TI	ESTI	NG MEA	SUREM	IENT	
Confini	ng Press	sure (psi)	69.9		Influent Pres	sure (psi)		65	Effluen	t Press. (psi)	62.8
Reset?	Meas	. Time	ha _{out}		ha _{in}	Temperate	ure	Gradie	ent	k	k ₂₀
1=Yes	Date	Time	(cm)		(cm)	(°C)		Min.	Max.	(cm/s)	(cm/s)
1	03/12	09:00:00	9.40		0.40	24.0		8	34		
	03/12	11:00:00	8.80		1.10	24.0		30	•	7.7E-08	7.0E-08
	03/12	13:00:00	8.40		1.61	24.0		10		5.4E-08	4.9E-08
	03/12	15:30:00	7.90		2.32	24.0		10		5.8E-08	5.3E-08
03/12 16:30:00		7.60		2.51	24.0		30		5.9E-08	5.4E-08	
AVERAGE VALUES								27		6.2E-08	5.6E-08

Calculated by: Tom Paez

Tom Pag

Date: 3/18/19

TBPE Firm Registration No: F-9236 1810 SOUTH LAURENT VICTORIA, TEXAS 77901 PHONE (361) 578-6933

HYDRAULIC CONDUCTIVITY (ASTM D 5084)

Using Falling-Head Apparatus (Method C)

Project	Name:		Victoria	a L	andfill Exp	ansion				Client:		
Sample	Locatio	n:	EB-21	2-4	1					File No.:	V-191007	
Descrip	tion of S	Soil:	Clay							Lab Report:		
Type of	f Specim	en:	Undistu	ırbe	ed					Sample No:	1	
Back Pr	ressure S	Saturation C	Conditions	:		B Coeffici	ient			> or =	= 0.95	
Consoli	dation a	nd Permeat	ion Condi	itior	ns:	Effective S	Stress	, psi:		=	8.0	
Pipet L	ength, 1	Lp (cm)	11.250	in	28.575 cm	Pipet Area	a, a (2	5.000 cm ²	³ /Lp)	=	0.875 cm^2	
						Specific C	Bravity	y of Water	r, G _W	=	1.003	
					SPECIMEN	N DIMENS	SION	S AND P	ROPER	TIES		
	Item				Initial			Final				
			Input Da	ita	Cor. Factor	Output Da	nta	Input Da	ata	Cor. Factor	Output Data	
Sample Diameter			2.82	in	2.54	7.16	cm	2.83	in	2.54	7.19 cm	
Sample Area			6.25	in		40.30	cm^2	6.29			40.58 cm^2	
Sample Length			2.19	in	2.54	5.56	cm	2.20	in	2.54	5.59 cm	
Tare Number			1					2				
Tare Weight (gm)			300.10					132.10				
Wet Soil + Tare (gm)			480.30					536.6				
Dry Soil + Tare (gm)			434.30					423.80				
Water V	Weight (gm)				46.00					112.80	
Dry Soi	il Weigh	t (gm)				134.20					291.70	
Moistur	re Conte	nt (%)				34.3					38.7	
Wet So	il Weigh	nt (gm)	400.50					414.00			-	
Wet De	ensity (po	cf)				111.5					114.0	
Dry De	nsity (pc	cf)				83.1					82.2	
Saturati	on (%)					90.0				_	99.4	
Specific	c Gravity	ý	2.70					TESTED			ASSUMED X	
		Н	IYDRAU.	LIC	CONDUCT	TVITY TH	ESTI	NG MEA	SUREM	IENT		
Confini	ng Press	sure (psi)	69		Influent Pres	sure (psi)		64	Effluen	t Press. (psi)	62.5	
Reset?	Meas	s. Time	ha _{out}		ha _{in}	Temperatu	ure	Gradie	ent	k	k ₂₀	
1=Yes	Date	Time	(cm)		(cm)	(°C)		Min.	Max.	(cm/s)	(cm/s)	
1	02/06	09:39:00	8.24		1.70	24.0		8	34			
	02/07	08:40:00	8.14		1.76	24.0		20	-	1.2E-09	1.1E-09	
02/08 07:40:00		8.14		1.88	24.0		10		8.9E-10	8.0E-10		
	02/08	16:40:00	8.10		1.94	24.0		10		1.9E-09	1.7E-09	
02/09 10:43:00		8.08		2.04	24.0		20		1.1E-09	1.0E-09		
AVERAGE VALUES								20		1.3E-09	1.2E-09	

Calculated by: Tom Paez

Tom Pag

Date: 2/11/19

Tested By: KY

Tested By: KY

Tested By: KY

TBPE Firm Registration No: F-9236 1810 SOUTH LAURENT VICTORIA, TEXAS 77901 PHONE (361) 578-6933

HYDRAULIC CONDUCTIVITY (ASTM D 5084)

Using Falling-Head Apparatus (Method C)

Project	roject Name: Victoria Landfill Expansio								Client:	
Sample	Locatio	n:	EB-23	48	-50'				File No.:	V-191007
Descrip	tion of S	Soil:	Clay						Lab Report:	
Type of	Specim	ien:	Undistu	ırbe	ed				Sample No:	1
Back Pr	ressure S	Saturation C	onditions	:		B Coefficient			> or =	= 0.95
Consoli	dation a	nd Permeat	ion Condi	tior	18:	Effective Stres	s, psi:		=	8.0
Pipet Le	ength, 1	Lp (cm)	11.250	in	28.575 cm	Pipet Area, a (25.000 cm	³ /Lp)	=	0.875 cm^2
						Specific Gravi	ty of Wate	r, G _w	=	1.003
					SPECIMEN	N DIMENSION	NS AND P	ROPER	RTIES	
	Item				Initial				Final	
			Input Da	ita	Cor. Factor	Output Data	Input D	ata	Cor. Factor	Output Data
Sample Diameter			2.80	in	2.54	7.11 cm	2.82	in	2.54	7.16 cm
Sample Area			6.16	in		39.73 cm	6.25			40.30 cm^2
Sample Length			2.04	in	2.54	5.18 cm	2.06	in	2.54	5.23 cm
Tare Number			1				2			
Tare Weight (gm)			100.50				126.00			
Wet Soil + Tare (gm)			251.20				572.4			
Dry Soil + Tare (gm)			231.90				508.30			
Water V	Neight (gm)				19.30			•	64.10
Dry Soi	l Weigh	t (gm)				131.40				382.30
Moistur	e Conte	nt (%)				14.7				16.8
Wet So	il Weigł	ıt (gm)	448.70				463.20			
Wet De	nsity (po	ef)				136.1				137.1
Dry De	nsity (pc	cf)				118.7				117.5
Saturati	on (%)					94.4				104.2
Specific	c Gravity	y	2.70				TESTED			ASSUMED X
		Н	YDRAU	LIC	CONDUCT	IVITY TEST	ING MEA	SUREN	IENT	
Confini	ng Press	sure (psi)	70		Influent Pres	sure (psi)	65.1	Effluen	t Press. (psi)	64
Reset?	Meas	s. Time	ha _{out}		ha _{in}	Temperature	Gradi	ent	k	k ₂₀
1=Yes	Date	Time	(cm)		(cm)	(°C)	Min.	Max.	(cm/s)	(cm/s)
1	03/12	08:00:00	8.70		0.48	24.0	8	34		
	03/15	19:00:00	7.50		1.82	24.0	16		6.5E-09	5.9E-09
	03/17	10:35:00	7.04		2.26	24.0	10		4.9E-09	4.5E-09
	03/20	18:15:00	6.16		3.10	24.0	10		4.8E-09	4.3E-09
03/22 06:25:00		5.86		3.46	24.0	15		4.1E-09	3.7E-09	
AVERAGE VALUES							17		5.1E-09	4.6E-09

Calculated by: Tom Paez

Tom Pag

Date: 3/25/19

Tested By: ST

Tested By: ST

TBPE Firm Registration No: F-9236 1810 SOUTH LAURENT VICTORIA, TEXAS 77901 PHONE (361) 578-6933

HYDRAULIC CONDUCTIVITY (ASTM D 5084)

Using Falling-Head Apparatus (Method C)

Project	Name:		Victoria	a L	andfill Exp	ansion				Client:		
Sample	Locatio	n:	EB-24	33-	35'					File No.:	V-191007	
Descrip	tion of S	Soil:	Clay							Lab Report:		
Type of	f Specim	en:	Undistu	ırbe	ed					Sample No:	1	
Back Pr	ressure S	Saturation C	Conditions	:		B Coeffici	ient			> or =	0.95	
Consoli	dation a	nd Permeat	ion Condi	tior	ns:	Effective S	Stress	, psi:		=	8.0	
Pipet L	ength, 1	Lp (cm)	11.250	in	28.575 cm	Pipet Area	a, a (2	5.000 cm	³ /Lp)	=	0.875 cm^2	
						Specific G	bravity	y of Water	r, G _w	=	1.003	
			-		SPECIMEN	N DIMENS	SION	S AND P	ROPER	TIES		
	Item		Initial					Final				
			Input Da	nta	Cor. Factor	Output Da	ita	Input Da	ata	Cor. Factor	Output Data	
Sample	Diamete	er	2.87	in	2.54	7.29	cm	2.87	in	2.54	7.29 cm	
Sample	Area		6.47	in		41.74	cm^2	6.47			41.74 cm^2	
Sample Length			1.83	in	2.54	4.65	cm	1.83	in	2.54	4.65 cm	
Tare Number			1					2				
Tare Weight (gm)			151.90					191.50				
Wet Soil + Tare (gm)			277.10					579.4				
Dry Soil + Tare (gm)			250.70					497.70				
Water V	Weight (gm)				26.40					81.70	
Dry Soi	il Weigh	t (gm)				98.80					306.20	
Moistur	re Conte	nt (%)				26.7				!!!!!	26.7	
Wet So	il Weigh	nt (gm)	377.10					386.00			-	
Wet De	ensity (po	ef)				121.3					124.2	
Dry De	nsity (pc	cf)				95.8					98.0	
Saturati	on (%)					95.0				_	100.3	
Specific	c Gravity	y	2.70					TESTED			ASSUMED X	
		Н	YDRAU	LIC	CONDUCT	TVITY TH	ESTI	NG MEA	SUREM	IENT		
Confini	ng Press	sure (psi)	70.3		Influent Pres	sure (psi)		64.2	Effluen	t Press. (psi)	63.2	
Reset?	Meas	. Time	ha _{out}		ha _{in}	Temperatu	ıre	Gradie	ent	k	k ₂₀	
1=Yes	Date	Time	(cm)		(cm)	(°C)		Min.	Max.	(cm/s)	(cm/s)	
1	03/05	08:00:00	2.44		7.58	24.0		8	34			
	03/06	08:00:00	1.76		8.28	24.0		14		1.4E-08	1.3E-08	
	03/07	13:10:00	1.42		8.56	24.0		10		5.3E-09	4.8E-09	
	03/07	16:30:00	1.20		8.78	24.0		10		3.3E-08	3.0E-08	
03/08 14:30:00		1.02		8.92	24.0		13		3.7E-09	3.3E-09		
AVERAGE VALUES								16		1.4E-08	1.3E-08	

Calculated by: Tom Paez

Tom Pag

Date: 3/18/19

APPENDIX 5F – SURVEY REPORT

Victoria Land Fill Well Location Survey

Source Name	Northing Location	Easting Location	Top of Casing Elev. (MSL)	Top of Concete Slab Elev. (MSL)	Natural Ground Elevation (MSL)
EB-01	13442437.81	2643817.21	64.02	62.35	62.0
EB-02	13441678.37	2643849.85			61.9
EB-03	13441952.68	2643230.03			64.4
EB-04	13442829.13	2643005.70			62.3
EB-05	13442071.13	2642394.99			62.9
EB-06	13441621.93	2642706.68			67.4
EB-07	13441135.03	2643063.23			62.6
EB-08	13440629.72	2642843.15	64.04	62.43	61.9
EB-09	13440552.23	2642295.84			56.2
EB-10	13441642.93	2641822.79			63.3
EB-11	13440532.65	2641163.79	64.54	63.75	63.1
EB-12	13440010.68	2641570.40			62.6
EB-13	13439433.10	2640793.75			63.1
EB-14	13439942.32	2640467.14			63.4
EB-15	13440350.70	2640150.15			63.5
EB-16	13439284.65	2639576.79			64.0
EB-17	13438595.87	2639999.39	64.25	62.6	62.1
EB-18	13438298.99	2639259.96			62.6
EB-19	13438734.31	2638841.31	65.31	63.79	63.3
EB-20	13439244.50	2638581.89			63.7
EB-21	13438660.85	2637726.28			63.9
EB-22	13438260.57	2638153.95			63.2
EB-23	13437709.96	2638483.34			62.9
EB-24	13437928.12	2637633.08	65.10	63.59	63.2

Site Benchmark (Provided information)

Elevation (MSL)

13442155.43

2639554.51

64.97

APPENDIX 5G – HISTORICAL SITE GEOLOGY INFORMATION

Summary of Historical Borings

Victoria Landfill Expansion Victoria County, Texas

	Approximate Ground Surface		
	Elevation (feet	Approximate Borehole	
	above mean sea	Depth (feet below ground	Data bastallad
U	level)	surface)	Date Installed
C-3		50	2/24/2011
C-5		50	2/24/2011
<u> </u>		50	2/24/2011
D-3		50	2/23/2011
D-5		50	2/23/2011
D-7		50	2/24/2011
MVV-A2*	65	60	2/25/2011
MVV-A5^	64	60	2/25/2011
MW-C1*	65	54	2/25/2011
MW-1	(boring log not availa	ble, depicted on historical cros	ss-section)
MW-5	NA	65	5/13/1992
MW-6	NA	65	5/12/1992
MW-7	NA	65	5/14/1992
MW-8	NA	65	6/18/1992
MW-9	NA	77	6/16/1992
MW-10* (P-1)	66.7	68.5	10/23/1995
MW-11* (P-2)	65.7	73.5	10/21/1995
MW-12* (P-3)	64.7	70.0	10/20/1995
MW-13* (P-4)	64.2	73.0	10/16/1995
MW-14* (P-5)	63.9	100.0	10/18/1995
MW-15 (P-6)	63.5	70.0	10/19/1995
MW-15A*	64	55	4/27/2010
MW-16* (P-7)	63.0	70.0	10/20/1995
MW-17* (P-8)	63.6	68.5	10/25/1995
MW-18* (P-9)	63.8	68.5	10/25/1995
MW-19* (P-10)	64.0	73.5	10/24/1995
MW-20* (P-11)	64.6	68.5	10/23/1995
MW-21*	64	55	4/28/2010
MW-22*	66	70	4/30/2010
MW-23*	69.3	60	4/28/2010
MW-24*	70.0	57	4/28/2010
OW-25*	67	60	4/27/2010
OW-26*	66	60	4/26/2010
OW-27*	68	65	4/29/2010
OW-28*	66	60	5/3/2010
B-1	64.0	70	3/22/1982
B-2	63.1	45	3/24/1982
B-3	62.8	80	3/25/1982
B-4	63.6	55	3/24/1982
B-A	(boring log not availa	ble, depicted on historical cros	ss-section)
B-B	63.3	40	3/23/1982
B-C	63.4	40	3/22/1982
B-D	63.4	40	3/22/1982

Summary of Historical Borings

Victoria Landfill Expansion Victoria County, Texas

ID	Approximate Ground Surface Elevation (feet above mean sea	Approximate Borehole Depth (feet below ground	Data Installed
עו	level)	surface)	Date Installed
B-E	62.4	40	3/24/1982
B-F	64.0	40	3/24/1982
B-G	63.5	40	4/29/1982
1	63.8	30.0 11/3/19	
2	63.8	30.0	11/3/1980
3	63.8	30.0	11/3/1980
4	63.8	30.0	11/3/1980
5	63.1	30.0	11/3/1980
6	64.3	30.0	11/3/1980
7	62.9	30.0	11/4/1980
8	63.4	30.0	11/4/1980
9	63.5	30.0	11/4/1980
10	62.3	30.0	11/4/1980

Notes:

* - Included in current Landfill monitoring network

Attachment 5-246

SECTION A'-A'

Permit Application 1522B

بالمراجع والمحاج والمتحاج والمحاج والم

-

REDUCTION DO NOT SCALE

RESOURCE ENCIDEERING IN. Revis

;

REDUCTION DO NOT SCALE

-

Permit Application 1522B

Attachment 5-249

REDUCTION DO NOT SCALE

		and the second second second	-
	Β		5
(IMUM TOP OF WASTE ELEVATION 140.5' MSL	DESCRIPTION	006 REVIED FINUL CONTOUR TO RELACK EDUCH 007 REVIED FINUL CONTOUR FUNIL 10 FT HECHTI INCREDAE 007 REVIED SMALE LOCATIONS, 10 FT HECHT INCREDAE	009 REVISE SMULL LOCATIONS, BASE GRADES, REDUCED MASTE FUOTPRANT
GAS VENT ARE PROPOSED AT THE SITE	DAT	12/10 V	03/20
HIGHEST STATIC LEVEL	2		
- PROPOSED TOP OF FINAL COVER - PROPOSED TOP OF WASTE INDICATES REVISION	E CROSS-SECTION 1-1	3	
DRAINAGE SWALE	DRAWING TITL	PROJECT TITL	Ī
	CLIENT REPUBLIC WASTE SERVICES	CITY OF VICTORIA LANDFILL	VICTORIA, TEXAS 77905
E: HIS DRAWING REPRODUCED FROM SDP ATTACHMENT B, PREPARED BY JFK GROUP, INC., MAY 1, 1996. NLY THE FINAL COVER HAS CHANGED FOR THE O-FOOT HEIGHT INCREASE.	SCS ENGINEERS STEARNS, CONRAD AND SCHMIDT	CONSULTING ENGINEERS 12851 BRIAR FOREST DR, SUITE 250, HOUSTON, TX 77077 PH (281) 397-6747 FAX NG, (281) 283-7878	TROL NO. 162.085.41 DIN. BT. JL.J CV.A. NY BT. DJM APP. STR.M. DJM APP. STR.M.
THIS ATTACHMENT WAS INCLUDED IN A PERMIT	CADD F 29-01053 1 DATE: 1	1LE: ECTION 1-1 1/2008	
MODIFICATION, AS PREPARED BY WEAVER BOOS CONSULTANTS, AND SIGNED AND SEALED BY JEFFREY P. YOUNG (TEXAS P.E. 79809) ON JANUARY 15, 2007. SCS ENGINFERS IS CERTIFYING	SCALE: AS	S SHOW	'N
M BY ENGINEERING SEAL, ONLY THE REVISIONS SHOWN DATED MARCH 2009. FOR PERMITTING PURPOSES ONLY		2B	

	_	بصبيعت بستراف
	Ä	Ę
	DESCRIPTION	Revead that contrum to relative hold in Revead that contrum run, 10 th hold in Include Revead Brace Locationer, 10 th hold in Alluced Reveal Reveal Locationer, 1936 Gaussy Heduced Reveal Fourther
	ME	2006 7001 7001 8001
	2	10 00
-	ä	
UM TOP OF WASTE ELEVATION 140.5' MSL UM FILL ELEVATION 144' MSL IS VENT ARE PROPOSED AT THE SITE INITIAL LEVEL HIGHEST STATIC LEVEL	S-SECTION 2-2	r Modification
location of screens	ROS	LIME
PROPOSED TOP OF FINAL COVER	Ű	E E
PROPOSED TOP OF WASTE	ONIMUL	ROJECT
NDICATES REVISION	5	<u>I</u> E
)RAINAGE SWALE	CLIENT BEDI IDI IC WASTE SEDVICE	CITY OF VICTORIA LANDFIL
E: HIS DRAWING REPRODUCED FROM SDP ATTACHMENT C, PREPARED BY JFK GROUP, INC., MAY 1, 1996. INLY THE FINAL COVER HAS CHANGED FOR THE 10 OOT HEIGHT INCREASE.	SCS ENGINEERS	D CONSULTING ENGINEERS 12641 BILAR FORENT DR, BUITE 220, HOUSTON, TX 7707 12641 BILAR FORENT DR, BUITE 220, HOUSTON, TX 7707 FILE 2005 41 Dev. an. d.1. d. m. m. m. d. 127, m. g. d. m. m. m. d. M. m. m. m. d. 128, m. g. d. m. d. m. m. m. d. M.

	1				-	-
	٩			1	H	
TOP OF WASTE ELEVATION 140.5' MSL FILL ELEVATION 144' MSL	REV DATE DESCRIPTION	A 03/2006 REVISED FINUL CONTIDUR TO REMOVE BEHCH	A 01/2007 REVISIO FINL CONTOUR PLAN, 10 FT HEIGHT INCREASE	A DIVIDIO REVISED SAMLE LOCATIONS, 10 FT HIDGHT MCREASE		
ACHT ARE PROPERED AT THE SITE						
DCATEON OF SCREENS NOPOSED TOP OF FINAL COVER NOPOSED TOP OF WASTE DICATES REVISION	ME CDOCC_CECTION 2.2		1	PERMIT MODIFICATION		
ainage swale	LUNIMARIO	BO.ECT 1	NUCCO			
	CLENT DEDITELLO WASTE SEDVICES	CITY OF VICTODIA LANDER L	CITY OF VICTORIA LANDFILL	18545 F.M. 1686	VICTORIA, TEXAS 77905	
AWING REPRODUCED FROM SDP ATTACHMENT PARED BY JFK GROUP, INC., MAY 1, 1996.	SCS ENGINEERS	STEARNS, CONRAD AND SCHMIDT CONSULTING ENGINEERS	12651 BRIAR FOREST DR, SUITE 250, HOUSTON, TX 77077		Prov. Ro. Row End. End. J. J. D.M.	I AM I AM I AM
THIS ATTACHMENT WAS INCLUDED IN A PERMIT MODIFICATION, AS PREPARED BY WEAVER BOOS CONSULTANTS, AND SIGNED AND SEALED BY JEFFREY P, YOUNG (TEXAS P.E. 79803) ON JANUARY 15, 2007. SCS ENGINEERS IS CERTIFYING, BY ENGINEERING CEAL ONLY DUE DEFINITION	CADD 20-0102 DATE: SCALE	FILE S SET 11/	20 SH0	-3 08 0Wr	4	
BT ENGINEERING SEAL, ONLY THE REVISIONS SHOWN DATED MARCH 2009.		2	2)		
						- #

TINITIAL LEVEL DI HEL

VHIDEST STATIC LEVEL IN HSL

= Grondwater Minitoring Wells to be plugged and abandened

** GROUNSWATER KONITERING VELLS PREVIOUSLY PLOGEES AND ADAYDINED PROPOSED TOP OF FINAL COVER

PROPOSED TOP OF WASTE

INDICATES REVISION

DRAINAGE SWALE

Permit Application 1522B

Revision 0, March 28, 2022

Permit Application 1522B

Attachment 5-256

Revision 0, March 28, 2022

GRAPHIC SCALE

20' 200'

0 0

15

60' VERT. 600' HORZ.

Permit Application 1522B

Attachment 5-257

40' 400'

	Ъ		Ę	Π
-	JE DESCRIPTION	20/96 CENERAL REVISION 13/97 ADD HOTE	2009 RENSE BASE GRADES	
60	EV DA	A 12/1	2 In 10	~
50	2		7	7
40	272 NC		CATION	
- <u>30</u>	SECTIO		MODIFI	
	CROSS	E	ERMIT	
Ба Мариания С С С С С С С С С С С С С С С С С С С	DRAWING TI	PROJECT TII	<u>L</u>	
0				
<u>-1</u> 0			1686 VC 77005	CORTIC
- <u>-2</u> 0		CITY OF VICTORI	18545 F.M.	
NG LOG WIDTHS NOT TO SCALE.	SCS ENGINEERS	CONSULTING ENGINEERS	PH (201) 397-6747 FAX NO. (201) 203-7078 FROM NO. 100 NO. 871 10. (201) 203-7078	
THIS ATTACHMENT WAS INCLUDED IN A PERMIT MODIFICATION, AS PREPARED BY JFK GROUP, AND SIGNED AND SEALED BY J. FLETCHER KELLY (TEXAS P.E. 61815) ON JANUARY 13, 1997. SCS ENGINEERS IS CERTIFYING, BY ENGINEERING SEAL, ON Y DIF EDUCION COMMUNICATION OF THE	2J-CROSS DATE: SCALE A ATTAC	S SH	7-7)08 OWN IT	
FOR PERMITTING PURPOSES ONLY		2ر	J	

APPENDIX 5H – HYDRAULIC GRADIENTS AND GROUNDWATER VELOCITY FLOW RATE CALCULATIONS

V -	k v i	M/boro:	V	_	estimated linear groundwater valuativ (ft/day)
v –	KXI	where.	v	-	estimated linear groundwater velocity (it/day)
	n _e		k	=	hydraulic conductivity
				=	3.8E-02 ft/min
			i	=	estimated hydraulic gradient (ft/ft)
			n _e	=	effective porosity (percent)
				=	0.35 (estimated for fine sand)
Estimate	ed Hydraulic Gradient:				
i =	dh	Where:	dh	=	head difference between data points (ft)
•	dL		dL	=	horizontal distance between head difference (ft)

Between	33	and	26	Contours
(Refer to Fig	ure 4-3)			
i =	7.00	ft	_	
	6897	ft		
i =	1.0E-03	ft/ft		
V =	3.8E-02	ft/min	* 1.0E-03	ft/ft
			0.35	
V =	1.1E-04	ft/min		
V -	F7 00	ft /		
V =	57.92	π/year		

Notes:

Estimated Groundwater Velocity:

-The information contained in this table relates to groundwater flow on Figure 4-3.

-As noted in the 2019 Annual Detection, Assessment, and Correction Action Groundwater Monitoring Report, hydraulic conductivity (k) and effective porosity (n_e) values as found in Attachment 5 of the *Site Development Plan* specifically, *Groundwater Characterization Report*, August 2009 Revision, by Hydrex Environmental, Inc. (page 4A)

V = kxi	Where:	V	=	estimated linear groundwater velocity (ft/day)
n _e		k	=	hydraulic conductivity
			=	3.8E-02 ft/min
		i	=	estimated hydraulic gradient (ft/ft)
		n _e	=	effective porosity (percent)
			=	0.35 (estimated for fine sand)
Estimated Hydraulic Gradient:				
i = dh	Where:	dh	=	head difference between data points (ft)
dL		dL	=	horizontal distance between head difference (ft)

Between	29	and	27	Contours
(Refer to Fig	ure 4-4)			
i =	2.00	ft	_	
	1698	ft		
i =	1.2E-03	ft/ft		
V =	3.8E-02	ft/min	* 1.2E-03	ft/ft
			0.35	
V =	1.3E-04	ft/min		
V =	67.21	ft/year		

Notes:

Estimated Groundwater Velocity:

-The information contained in this table relates to groundwater flow on Figure 4-4.

-As noted in the 2019 Annual Detection, Assessment, and Correction Action Groundwater Monitoring Report, hydraulic conductivity (k) and effective porosity (n_e) values as found in Attachment 5 of the *Site Development Plan* specifically, *Groundwater Characterization Report*, August 2009 Revision, by Hydrex Environmental, Inc. (page 4A)

V = kxi	Where:	V	=	estimated linear groundwater velocity (ft/day)
n _e		k	=	hydraulic conductivity
			=	3.8E-02 ft/min
		i	=	estimated hydraulic gradient (ft/ft)
		n _e	=	effective porosity (percent)
			=	0.35 (estimated for fine sand)
Estimated Hydraulic Gradient:				
i = dh	Where:	dh	=	head difference between data points (ft)
dL		dL	=	horizontal distance between head difference (ft)

28	and	25	Contours
ure 4-5)	ıre 4-5)		
3.00	ft	-	
3035	ft		
9.9E-04	ft/ft		
	<i></i>	* • • • • • • •	c c.
3.8E-02	ft/min	* 9.9E-04	ft/ft
		0.35	
	<i>.</i>		
1.1E-04	tt/min		
56 / 1	ft/voar		
	<u>ure 4-5)</u> <u>3.00</u> 3035 9.9E-04 <u>3.8E-02</u> 1.1E-04 56.41	<u>3.00 ft</u> <u>3.00 ft</u> <u>3.035 ft</u> <u>9.9E-04 ft/ft</u> <u>3.8E-02 ft/min</u> <u>1.1E-04 ft/min</u> <u>56.41 ft/year</u>	<u>3.00 ft</u> <u>3.00 ft</u> <u>3.035 ft</u> <u>9.9E-04 ft/ft</u> <u>3.8E-02 ft/min * 9.9E-04</u> <u>0.35</u> 1.1E-04 ft/min <u>56.41 ft/year</u>

Notes:

Estimated Groundwater Velocity:

-The information contained in this table relates to groundwater flow on Figure 4-5.

-As noted in the 2019 Annual Detection, Assessment, and Correction Action Groundwater Monitoring Report, hydraulic conductivity (k) and effective porosity (n_e) values as found in Attachment 5 of the *Site Development Plan* specifically, *Groundwater Characterization Report*, August 2009 Revision, by Hydrex Environmental, Inc. (page 4A)

Page 3 of 6

V = kxi	Where:	V	=	estimated linear groundwater velocity (ft/day)
n _e		k	=	hydraulic conductivity
			=	3.8E-02 ft/min
		i	=	estimated hydraulic gradient (ft/ft)
		n _e	=	effective porosity (percent)
			=	0.35 (estimated for fine sand)
Estimated Hydraulic Gradient:				
i = dh	Where:	dh	=	head difference between data points (ft)
dL		dL	=	horizontal distance between head difference (ft)

Between	30.5	and	24.5	Contours
(Refer to Fig	ure 4-5)			
i =	6.00	ft	_	
	6340	ft		
i =	9.5E-04	ft/ft		
V =	3.8E-02	ft/min	* 9.5E-04	ft/ft
			0.35	
V =	1.0E-04	ft/min		
V =	54.00	ft/year		

Notes:

Estimated Groundwater Velocity:

-The information contained in this table relates to groundwater flow on Figure 4-6.

-As noted in the 2019 Annual Detection, Assessment, and Correction Action Groundwater Monitoring Report, hydraulic conductivity (k) and effective porosity (n_e) values as found in Attachment 5 of the *Site Development Plan* specifically, *Groundwater Characterization Report*, August 2009 Revision, by Hydrex Environmental, Inc. (page 4A)

V = kxi	Where:	V	=	estimated linear groundwater velocity (ft/day)
n _e		k	=	hydraulic conductivity
			=	3.8E-02 ft/min
		i	=	estimated hydraulic gradient (ft/ft)
		n _e	=	effective porosity (percent)
			=	0.35 (estimated for fine sand)
Estimated Hydraulic Gradient:				
i = dh	Where:	dh	=	head difference between data points (ft)
dL		dL	=	horizontal distance between head difference (ft)

r				
Between	30	and	25	Contours
(Refer to Figu	ure 4-5)			
i =	5.00	ft		
	5600	ft		
i =	8.9E-04	ft/ft		
V =	3.8E-02	ft/min	* 8.9E-04	ft/ft
			0.35	
V =	9.7E-05	ft/min		
V =	50.95	ft/year		

Notes:

Estimated Groundwater Velocity:

-The information contained in this table relates to groundwater flow on Figure 4-7.

-As noted in the 2019 Annual Detection, Assessment, and Correction Action Groundwater Monitoring Report, hydraulic conductivity (k) and effective porosity (n_e) values as found in Attachment 5 of the *Site Development Plan* specifically, *Groundwater Characterization Report*, August 2009 Revision, by Hydrex Environmental, Inc. (page 4A)

V = kxi	Where:	V	=	estimated linear groundwater velocity (ft/day)
n _e		k	=	hydraulic conductivity
			=	3.8E-02 ft/min
		i	=	estimated hydraulic gradient (ft/ft)
		n _e	=	effective porosity (percent)
			=	0.35 (estimated for fine sand)
Estimated Hydraulic Gradient:				
i = dh	Where:	dh	=	head difference between data points (ft)
dL		dL	=	horizontal distance between head difference (ft)

Between	30	and	25	Contours
(Refer to Figu	ure 4-5)			
i =	5.00	ft	_	
	4863	ft		
i =	1.0E-03	ft/ft		
	0.05.00	6	* 4 05 00	c. /c.
V =	3.8E-02	ft/min	^ 1.0E-03	ft/ft
			0.35	
V -		ft/min		
v –	1.12-04			
V =	58 67	ft/vear		

Notes:

Estimated Groundwater Velocity:

-The information contained in this table relates to groundwater flow on Figure 4-8.

-As noted in the 2019 Annual Detection, Assessment, and Correction Action Groundwater Monitoring Report, hydraulic conductivity (k) and effective porosity (n_e) values as found in Attachment 5 of the *Site Development Plan* specifically, *Groundwater Characterization Report*, August 2009 Revision, by Hydrex Environmental, Inc. (page 4A)

Page 6 of 6

APPENDIX 5I – HISTORICAL SITE HYDROGEOLOGY INFORMATION

Groundwater Elevations, Gradient, and Flow Rate - Semi-Annual Monitoring Program Wells December 2007 - September 2021

Victoria Landfill Expansion

Victoria County, Texas

	Groundwater Elevation Range (feet above mean sea		Groudwater Gradient	Groudwater Flow Rate	2	
Date	l	evel))1	(feet/feet)	(feet/year)	Source ²
9/7/2021	25.33	-	30.62	0.0010	55.27	Hydrex, 2021
3/1/2021	23.98	-	29.08	0.0009	51.87	Hydrex, 2021
8/4/2020	24.42	-	29.91	0.0010	57.37	Hydrex, 2020
2/25-27/2020	25.16	-	30.36	0.0010	56.58	Hydrex, 2020
8/6-7/2019	25.70	-	30.80	0.0009	53.79	Hydrex, 2019
2/12-13/2019	25.93	-	30.84	0.0008	47.53	Hydrex, 2019
8/13/2018	25.02	-	30.66	0.0010	54.60	Hydrex, 2018
2/5-6/2018	24.96	-	30.67	0.0010	55.27	Hydrex, 2018
8/2-3/2017	25.01	-	30.07 ³	0.0009	48.98	Hydrex, 2017
2/6-7/2017	24.95	-	29.77	0.0008	46.66	Hydrex, 2017
8/8-10/2016	24.72	-	29.65	0.0008	46.17	Hydrex, 2016
2/8/2016	24.31	-	29.47	0.0008	48.33	Hydrex, 2016
8/10-11/2015	24.01	-	29.89	0.0012	68.46	Hydrex, 2015
2/9-11/2015	22.72	-	28.67	0.0010	59.76	Hydrex, 2015
8/4/2014	23.03	-	28.86	0.0010	58.55	Hydrex, 2014
2/10-12/2014	23.44	-	28.76	0.0010	54.84	Hydrex, 2014
8/19/2013	23.64	-	29.21	0.0010	57.42	Hydrex, 2013
3/4/2013	24.29	-	30.22	0.0010	59.56	Hydrex, 2013
9/18-20/2012	24.29	-	30.27	0.001051724	60.05791	Hydrex, 2012b
6/5/2012	24.63	-	30.47	0.000982074	56.08055	Hydrex, 2012b
3/5/2012	24.79	-	30.21	0.000978463	55.87437	Hydrex, 2012b
12/12/2011	24.67	-	30.46	0.000989295	56.49291	Hydrex, 2012a
9/12/2011	25.39	-	30.82	0.000980268	55.97746	Hydrex, 2012a
3/7/2011	27.63	-	32.26	0.000835358	47.70248	Hydrex, 2012a
9/20/2010	27.43	-	32.14	0.000968254	126.97884	Hydrex, 2010
6/8/2010	26.98	-	31.26	0.000927438	121.62610	Hydrex, 2010
3/15/2010	26.83	-	31.23	0.000939815	123.24927	Hydrex, 2010
8/6/2009	26.69	-	31.23	0.000939076	123.15234	Hydrex, 2009
3/18/2009	27.20	-	31.45	0.000890894	116.83374	Hydrex, 2009
9/22/2008	27.93	-	31.65	not calculated	not calculated	Hydrex, 2008d
6/17/2008	28.25	-	31.95	not calculated	not calculated	Hydrex, 2008c
3/17/2008	28.69	-	32.20	not calculated	not calculated	Hydrex, 2008b
12/17/2007	28.70	-	32.22	not calculated	not calculated	Hydrex, 2008a

Notes:

- 1. Measurements shown for December 2007 March 2011 represent groundwater elevation range prior to the installation of the offsite corrective action monitoring wells to the southwest of the Landfill.
- 2. Citation of sources included in Section 4.0 of text.
- 3. A groundwater elevation of 33.49 feet msl was reported in August 2017 at MW-16, but this value was considered anomalous and was not used in the preparation of the groundwater elevation figure.

Permit Application 1522B

Revision 0, March 28, 2022

The City of Victoria Landfill MSW Permit No. 1522A 2009 Water Level Elevations

Monitor Well	Date of Water Level Measurements	Water Level Elevation	Date of Water Level Measurements	Water Level Elevation
MW-10	3/18/2009	27.20	8/6/2009	26.69
MW-11	3/18/2009	27.73	8/6/2009	27.33
MW-12	3/18/2009	29.45	8/6/2009	29.13
MW-13	3/18/2009	30.94	8/6/2009	30.80
MW-14	3/18/2009	31.23	8/6/2009	31.04
MW-15	3/18/2009	31.45	8/6/2009	31.23
MW-16	3/18/2009	30.96	8/6/2009	30.83
MW-17	3/18/2009	29.24	8/6/2009	28.97
MW-18	3/18/2009	28.06	8/6/2009	27.73
MW-19	3/18/2009	27.88	8/6/2009	27.17
MW-20	3/18/2009	27.38	8/6/2009	27.06

City of Victoria Landfill MSW Permit No. 1522A

Hydraulic Gradient Calculations

Hydraulic gradient was calculated between wells MW-14 and MW-20 for the March and August 2009 monitoring events. In addition, and based on the unique flow directions observed at the facility, the hydraulic gradient was also calculated between wells MW-15 and MW-20 for the March and August 2009 monitoring events. Calculation of hydraulic gradient was performed using the following equation:

 $i = \frac{\Delta h}{\Delta d}$ Where: Δh = change in hydraulic head Δd = change in distance between two known points

Gradient Measurement Line	Δh (feet)	Δd (feet)	i (feet/feet)	Monitoring Event
from well MW-14 to MW-20	3.85	4321.5	0.000890894	March 2009
from well MW-15 to MW-19	3.57	4323.4	0.000825739	March 2009
from well MW-14 to MW-20	3.98	4321.5	0.000920977	August 2009
from well MW-15 to MW-19	4.06	4323.4	0.000939076	August 2009

Estimated Flow Rate Calculations

The estimated groundwater flow rate was calculated for each monitoring event using the following formula:

 $v = \frac{ki}{n_e}$

Where: v = flow rate

k = hydraulic conductivity
i = hydraulic gradient (above)

 $n_e = effective porosity$

Flow Rate Measurement Line	k (cm/sec)	n _e	i (feet/feet)	v (feet/year)	Monitoring Event
from well MW-14 to MW-20	3.80E-02	0.3	0.000890894	116.83374	March 2009
from well MW-15 to MW-19	3.80E-02	0.3	0.000825739	108.28913	August 2009
from well MW-14 to MW-20	3.80E-02	0.3	0.000920977	120.77877	March 2009
from well MW-15 to MW-19	3.80E-02	0.3	0.000939076	123.15234	August 2009

The City of Victoria Landfill MSW Permit No. 1522A 2010 Water Level Elevations

Monitor Well	Date of Water Level Measurements	Water Level Elevation	Date of Water Level Measurements	Water Level Elevation	Date of Water Level Measurements	Water Level Elevation
MW-10	3/15/2010	26.83	6/8/2010	26.98	9/20/2010	27.43
MW-11	3/15/2010	27.32	6/8/2010	27.43	9/20/2010	27.86
MW-12	3/15/2010	29.14	6/8/2010	29.11	9/20/2010	29.75
MW-13	3/15/2010	30.91	6/8/2010	30.75	9/20/2010	31.70
MW-14	3/15/2010	31.08	6/8/2010	30.97	9/20/2010	31.65
MW-15A	3/15/2010	*	6/8/2010	31.26	9/20/2010	31.76
MW-16	3/15/2010	31.23	6/8/2010	30.88	9/20/2010	32.14
MW-17	3/15/2010	28.99	6/8/2010	28.97	9/20/2010	29.47
MW-18	3/15/2010	27.65	6/8/2010	27.77	9/20/2010	28.16
MW-19	3/15/2010	27.04	6/8/2010	27.19	9/20/2010	27.53
MW-20	3/15/2010	27.02	6/8/2010	27.17	9/20/2010	27.49
MW-21	3/15/2010	*	6/8/2010	28.42	9/20/2010	28.84
MW-22	3/15/2010	*	6/8/2010	27.27	9/20/2010	27.62
MW-23	3/15/2010	*	6/8/2010	27.85	9/20/2010	28.25
MW-24	3/15/2010	*	6/8/2010	28.27	9/20/2010	28.72

* MW-15A, MW-21, MW-22, MW-23, and MW-24 were installed April 26 through May 3, 2010.

Revision 0, March 28, 2022

Revision 0, March 28, 2022

City of Victoria Landfill MSW Permit No. 1522A

Hydraulic Gradient Calculations

Hydraulic gradient was calculated between wells MW-14 and MW-20 for the March, June, and September 2010 monitoring events. In addition, and based on the unique flow directions observed at the facility, the hydraulic gradient was also calculated between wells MW-15A and MW-20 for the June and September 2010 monitoring events. Calculation of hydraulic gradient was performed using the following equation:

 $i = \frac{\Delta h}{\Delta d}$ Where: Δh = change in hydraulic head Δd = change in distance between two known points

Gradient Measurement Line	Δh (feet)	Δd (feet)	i (feet/feet)	Monitoring Event
from well MW-14 to MW-20	4.06	4320	0.000939815	March 2010
from well MW-14 to MW-20	3.80	4320	0.00087963	June 2010
from well MW-15A to MW-20	4.09	4410	0.000927438	June 2010
from well MW-14 to MW-20	4.16	4320	0.000962963	September 2010
from well MW-15A to MW-20	4.27	4410	0.000968254	September 2010

Where:

Estimated Flow Rate Calculations

The estimated groundwater flow rate was calculated for each monitoring event using the following formula:

 $v = \frac{ki}{n_e}$

v = flow rate k = hydraulic conductivity i = hydraulic gradient (above) n_e = effective porosity

Flow Rate Measurement Line	k (cm/sec)	n _e	i (feet/feet)	v (feet/year)	Monitoring Event
from well MW-14 to MW-20	3.80E-02	0.3	0.000939815	123.24927	March 2010
from well MW-14 to MW-20	3.80E-02	0.3	0.00087963	115.35646	June 2010
from well MW-15A to MW-20	3.80E-02	0.3	0.000927438	121.62610	June 2010
from well MW-14 to MW-20	3.80E-02	0.3	0.000962963	126.28496	September 2010
from well MW-15A to MW-20	3.80E-02	0.3	0.000968254	126.97884	September 2010
	Date of Water	Top-of-Casing Depth to Water		Water Level	
---------------	--	------------------------------	-----------------	-------------	
Monitor Well	r Well Level (TOC) Elevation Below TOC		Elevation		
	Measurements	(feet, msl)	(feet)	(feet, msl)	
MW-10	01/18/11	69.08	41.13	27.95	
MW-10	03/07/11	69.08	41.45	27.63	
MW-10	05/31/11	69.08	41.89	27.19	
MW-10	09/12/11	69.08	42.31	26.77	
MW-10	12/12/11	69.08	42.72	26.36	
o na sú filin	19 MA 69 10 10				
MW-11	01/18/11	68.32	39.92	28.40	
MW-11	03/07/11	68.32	40.21	28.11	
MW-11	05/31/11	68.32	40.77	27.55	
MW-11	09/12/11	68.32	41.26	27.06	
MW-11	12/12/11	68.32	41.60	26.72	
MW-12	01/18/11	67.51	37.54	29.97	
MW-12	03/07/11	67.51	37.79	29.72	
MW-12	05/31/11	67.51	38.28	29.23	
MW-12	09/12/11	67.51	38.60	28.91	
MW-12	12/12/11	67.51	38.93	28.58	
MW-13	01/18/11	66.89	35.52	31.37	
MW-13	03/07/11	66.89	35.71	31.18	
MW-13	05/31/11	66.89	36.00	30.89	
MW-13	09/12/11	66.89	36.21	30.68	
MW-13	12/12/11	66.89	36.63	30.26	
MW-14	01/18/11	66.56	34.96	31.60	
MW-14	03/07/11	66.56	35.16	31.40	
MW-14	05/31/11	66.56	35.47	31.09	
MW-14	09/12/11	66.56	35.74	30.82	
MW-14	12/12/11	66.56	36.10	30.46	
MW-15A	01/18/11	67.57	35.78	31.79	
MW-15A	03/07/11	67.57	35.93	31.64	
MW-15A	03/09/11	67.57	36.05	31.52	
MW-15A	05/03/11	67.57	36.20	31.37	
MW-15A	09/12/11	67.57	well obst	ructed	
MW-15A	12/12/11	67.57	well obstructed		

	Date of Water Top-of-Casing Depth to Water		Water Level	
Monitor Well	Level	(TOC) Elevation	Below TOC	Elevation
	Measurements	(feet, msl)	(feet)	(feet, msl)
	· · · · · · · · · · · · · · · · · · ·			
MW-16	01/18/11	65.69	34.39	31.30
MW-16	03/07/11	65.69	34.50	31.19
MW-16	05/31/11	65.69	34.81	30.88
MW-16	MW-16 09/12/11		35.08	30.61
MW-16	12/12/11	65.69	35.44	30.25
MW-17	01/18/11	66.04	36.24	29.80
MW-17	03/07/11	66.04	36.53	29.51
MW-17	05/31/11	66.04	37.00	29.04
MW-17	09/12/11	66.04	37.34	28.70
MW-17	12/12/11	66.04	37.70	28.34
MW-18	01/18/11	66.22	37.54	28.68
MW-18	03/07/11	66.22	37.84	28.38
MW-18	05/31/11	66.22	38.32	27.90
MW-18	09/12/11	66.22	38.82	27.40
MW-18	12/12/11	66.22	39.15	27.07
MW-19	01/18/11	66.76	38.63	28.13
MW-19	03/07/11	66.76	38.94	27.82
MW-19	05/31/11	66.76	39.45	27.31
MW-19	09/12/11	66.76	39.97	26.79
MW-19	12/12/11	66.76	40.30	26.46
		-2.189s	(1000)	6. C12420
MW-20	01/18/11	67.45	39.36	28.09
MW-20	03/07/11	67.45	39.66	27.79
MW-20	05/31/11	67.45	40.22	27.23
MW-20	09/12/11	67.45	40.66	26.79
MW-20	12/12/11	67.45	41.00	26.45
a (1997)				
MW-21	01/18/11	67.26	37.96	29.30
MW-21	03/07/11	67.26	38.28	28.98
MW-21	05/31/11	67.26	38.73	28.53
MW-21	09/12/11	67.26	39.06	28.20
MW-21	12/12/11	67.26	39.36	27.90
			10000 UBERT 20000	
MW-22	01/18/11	68.88	40.68	28.20
MW-22	03/07/11	68.88	41.00	27.88
MW-22	05/31/11	68.88	41.57	27.31
MW-22	09/12/11	68.88	42.02	26.86
MW-22	12/12/11	68.88	42.31	26.57

	Date of Water Top-of-Casing Depth to Water		Water Level	
Monitor Well	Level	(TOC) Elevation	Below TOC	Elevation
	Measurements	(feet, msl)	(feet)	(feet, msl)
MW-23	01/18/11	69.75	40.98	28.77
MW-23	03/07/11	69.75	41.28	28.47
MW-23	MW-23 05/31/11		41.87	27.88
MW-23	09/12/11	69.75	42.42	27.33
MW-23	12/12/11	69.75	43.73	26.02
MW-24	01/18/11	69.66	40.48	29.18
MW-24	03/07/11	69.66	40.76	28.90
MW-24	05/31/11	69.66	41.32	28.34
MW-24	09/12/11	69.66	41.69	27.97
MW-24	12/12/11	69.66	44.99	24.67
OW-25	01/18/11	69.93	39.51	30.42
OW-25	03/07/11	69.93	39.69	30.24
OW-25	05/31/11	69.93	40.17	29.76
OW-25	09/12/11	69.93	40.65	29.28
OW-25	12/12/11	69.93	41.02	28.91
OW-26	01/18/11	68 75	37.67	31.08
OW-26	03/07/11	68.75	37.86	30.89
OW-26	05/31/11	68.75	38.16	30.59
OW-26	09/12/11	68.75	38.50	30.25
OW-26	12/12/11	68.75	well obst	ructed
OW-27	01/18/11	70.73	40.38	30.35
OW-27	03/07/11	70.73	40.66	30.07
OW-27	05/31/11	70.73	41.16	29.57
OW-27	09/12/11	70.73	41.55	29.18
OW-27	12/12/11	70.73	41.88	28.85
OW-28	01/18/11	68.65	37.71	30.94
OW-28	03/07/11	68.65	36.39	32.26
OW-28	05/31/11	68.65	38.34	30.31
OW-28	09/12/11	68.65	38.60	30.05
OW-28	12/12/11	68.65	38.92	29.73
	00/07/11	00.55		2.2
MW-A2	03/07/11	68.06	41.65	26.41
MW-A2	05/31/11	68.06	42.08	25.98
MW-A2	09/12/11	68.06	42.67	25.39
MW-A2	12/12/11	68.06	43.08	24.98

Monitor Well	Monitor Well Date of Water Measurements		Depth to Water Below TOC (feet)	Water Level Elevation (feet, msl)
MW-A5	03/07/11	67.84	41.21	26.63
MW-A5	05/31/11	67.84	41.57	26.27
MW-A5	09/12/11	67.84	42.00	25.84
MW-A5	12/12/11	67.84	42.41	25.43
MW-C1	03/07/11	68.67	41.77	26.90
MW-C1	05/31/11	68.67	42.18	26.49
MW-C1	09/12/11	68.67	42.76	25.91
MW-C1	12/12/11	68.67	43.15	25.52

Revision 0, March 28, 2022

City of Victoria Landfill MSW Permit No. 1522A

Hydraulic Gradient Calculations

Hydraulic gradients were calculated where gauged wells were approximately located at each end of the flow lines depicted on the individual groundwater gradient maps for the March 2011, September 2011, and December 2011 monitoring events.

<i>i</i> –	Δh	Where:	Δh = change in hydraulic head
1-	Δd		Δd = change in distance between two known points

Gradient Measurement Line	Δh (feet)	Δd (feet)	i (feet/feet)	Monitoring Event
from well MW-14 to MW-20	3.61	4321.5	0.000835358	March 2011
from well MW-14 to MW-A2	5.43	5539.3	0.000980268	September 2011
from well MW-14 to MW-A2	5.48	5539.3	0.000989295	December 2011

Estimated Flow Rate Calculations

The estimated groundwater flow rate was calculated for each monitoring event using the following formula:

 $v = \frac{ki}{n_e}$

Where: v = flow rate

k = hydraulic conductivity
 i = hydraulic gradient (above)
 n_e = effective porosity

Flow Rate Measurement Line	k (ft/min)	n _e	i (feet/feet)	v (feet/year)	Monitoring Event
from well MW-14 to MW-20	3.80E-02	0.35	0.000835358	47.70248	March 2011
from well MW-14 to MW-A2	3.80E-02	0.35	0.000980268	55.97746	September 2011
from well MW-14 to MW-A2	3.80E-02	0.35	0.000989295	56.49291	December 2011

Note: Hydraulic conductivity (k) and effective porosity (n_e) values as found in Attachment 5 of the Site Development Plan specifically, *Groundwater Characterization Report, August 2009 Revision*, by Hydrex Environmental, Inc. (page 4A)

	Date of Water	Top-of-Casing	Depth to Water	Water Level
Monitor Well	Level	(TOC) Elevation	Below TOC	Elevation
	Measurements	(feet, msl)	(feet)	(feet, msl)
				(*****,****)
MW-10	03/05/12	69.08	43.08	26.00
MW-10	06/05/12	69.08	43.15	25.93
MW-10	09/18/12	69.08	43.45	25.63
MW-11	03/05/12	68.32	41.95	26.37
MW-11	06/05/12	68.32	42.09	26.23
MW-11	09/18/12	68.32	42.41	25.91
MW-12	03/05/12	67.51	39.25	28.26
MW-12	06/05/12	67.51	39.47	28.04
MW-12	09/18/12	67.51	39.70	27.81
MW-13	03/05/12	66.89	36.88	30.01
MW-13	06/05/12	66.89	37.16	29.73
MW-13	09/18/12	66.89	37.35	29.54
MW-14	03/05/12	66.56	36.25	30.31
MW-14 06/05/12		66.56	36.49	30.07
MW-14	09/18/12	66.56	36.78	29.78
MW-15A	03/05/12	67.57	well obst	ructed
MW-15A	06/05/12	67.57	37.10	30.47
MW-15A	09/18/12	67.57	37.30	30.27
MW-16	03/05/12	65.69	35.63	30.06
MW-16	06/05/12	65.69	35.88	29.81
MW-16	09/18/12	65.69	36.00	29.69
MW-17	03/05/12	66.04	38.00	28.04
MW-17	06/05/12	66.04	38.18	27.86
MW-17	09/18/12	66.04	38.35	27.69
MW-18	03/05/12	66.22	39.46	26.76
MW-18	06/05/12	66.22	39.62	26.60
MW-18	09/19/12	66.22	39.90	26.32
MW-19	03/05/12	66.76	40.65	26.11
MW-19	06/05/12	66.76	40.75	26.01
MW-19	09/20/12	66.76	40.05	26.71
MW-20	03/05/12	67.45	41.36	26.09

	Date of Water Top-of-Casing Depth to Water		Water Level	
Monitor Well	Level	(TOC) Elevation	Below TOC	Elevation
	Measurements	(feet, msl)	(feet)	(feet, msl)
MW-20	06/05/12	67.45	41.50	25.95
MW-20	09/20/12	67.45	41.82	25.63
MW-21	03/05/12	67.26	39.70	27.56
MW-21	06/05/12	67.26	39.93	27.33
MW-21	09/19/12	67.26	41.00	26.26
MW-22	MW-22 03/05/12		42.67	26.21
MW-22	MW-22 06/05/12		42.79	26.09
MW-22	09/18/12	68.88	43.07	25.81
MW-23	03/05/12	69.75	43.05	26.70
MW-23	06/05/12	69.75	43.16	26.59
MW-23	09/19/12	69.75	43.49	26.26
MW-24	03/05/12	69.66	42.34	27.32
MW-24	MW-24 06/05/12		42.50	27.16
MW-24	09/19/12	69.66	42.83	26.83
OW-25	OW-25 03/05/12		41.25	28.68
OW-25	06/05/12	69.93	41.42	28.51
000-25	09/18/12	69.93	41.60	28.33
014/ 26	02/05/12	69.75	woll about	w.ete.d
010-20	03/05/12	69.75	20.25	
011-20	00/03/12	68.75		29.40
011-20	03/10/12	00.75	weir obst	lucieu
OW-27	03/05/12	70.73	42.10	28.63
OW-27	06/05/12	70.73	42.32	28.41
OW-27	09/18/12	70.73	42.45	28.28
OW-28	03/05/12	68.65	39.06	29.59
OW-28	06/05/12	68.65	39.29	29.36
OW-28	09/18/12	68.65	39.40	29.25
MW-A2	03/05/12	68.06	43.27	24.79
MW-A2	06/05/12	68.06	43.43	24.63
MW-A2	09/20/12	68.06	43.77	24.29
	0010-11-5	07.51	10.55	
MW-A5	03/05/12	67.84	42.65	25.19
MIVV-A5	06/05/12	67.84	42.76	25.08
IVIVV-A5	09/20/12	67.84	43.15	24.69

	Date of Water	Top-of-Casing	Depth to Water	Water Level
Monitor Well	Level	(TOC) Elevation	Below TOC	Elevation
	Measurements	(feet, msl)	(feet)	(feet, msl)
MW-C1 03/05/12		68.67	43.30	25.37
MW-C1	06/05/12	68.67	43.52	25.15
MW-C1	09/20/12	68.67	43.81	24.86

City of Victoria Landfill MSW Permit No. 1522A

Hydraulic Gradient Calculations

Hydraulic gradients were calculated where gauged wells were approximately located at each end of the flow lines depicted on the individual groundwater gradient maps for the March 2012, June 2012, and September 2012 monitoring events.

<i>i</i> =	Δh	Where:	Δh = change in hydraulic head
1-	Δd		Δd = change in distance between two known points

Gradient Measurement Line	Δh (feet)	Δd (feet)	<i>i</i> (feet/feet)	Monitoring Event
from well MW-14 to MW-A2	5.42	5539.3	0.000978463	March 2012
from well MW-14 to MW-A2	5.44	5539.3	0.000982074	June 2012
from well MW-15A to MW-A2	5.98	5685.9	0.001051724	September 2012

Estimated Flow Rate Calculations

The estimated groundwater flow rate was calculated for each monitoring event using the following formula:

$$v = \frac{ki}{n_e}$$

Where: v = flow rate k = hydraulic conductivity

i = hydraulic gradient (above)

 n_e = effective porosity

Flow Rate Measurement Line	k (ft/min)	n _e	i (feet/feet)	v (feet/year)	Monitoring Event
from well MW-14 to MW-A2	3.80E-02	0.35	0.000978463	55.87437	March 2012
from well MW-14 to MW-A2	3.80E-02	0.35	0.000982074	56.08055	June 2012
from well MW-15A to MW-A2	3.80E-02	0.35	0.001051724	60.05791	September 2012

Note: Hydraulic conductivity (k) and effective porosity (n_e) values as found in Attachment 5 of the Site Development Plan specifically, *Groundwater Characterization Report, August 2009 Revision*, by Hydrex Environmental, Inc. (page 4A)

Hydrex Environmental, Inc. (TBPG Firm No. 50027)

	Top of March 2013 Event		Мау	May 2013 Event		August 2013 Event	
Well	Casing Elevation	Depth To Water (feet)	Groundwater Elevation	Depth To Water (feet)	Groundwater Elevation	Depth To Water (feet)	Groundwater Elevation
MW-10	69.08	43.45	25.63	No	ot Gauged	44.05	25.03
MW-11	68.32	42.33	25.99	No	ot Gauged	43.05	25.27
MW-12	67.51	39.60	27.91	No	ot Gauged	40.35	27.16
MW-13	66.89	37.34	29.55	No	ot Gauged	38.05	28.84
MW-14	66.56	36.74	29.82	No	ot Gauged	37.35	29.21
MW-15A	67.57	37.35	30.22	37.85	29.72	Well	Obstructed
MW-16	65.69	35.87	29.82	No	ot Gauged	36.65	29.04
MW-17	66.04	38.30	27.74	Not Gauged		39.00	27.04
MW-18	66.22	39.77	26.45	Not Gauged		40.45	25.77
MW-19	66.76	40.97	25.79	No	ot Gauged	41.60	25.16
MW-20	67.45	41.72	25.73	No	ot Gauged	42.50	24.95
MW-21	67.26	40.05	27.21	40.36	26.90	40.65	26.61
MW-22	68.88	42.98	25.90	No	ot Gauged	43.62	25.26
MW-23	69.75	43.32	26.43	No	ot Gauged	44.13	25.62
MW-24	69.66	42.65	27.01	No	ot Gauged	43.42	26.24
MW-A2	68.06	43.77	24.29	No	ot Gauged	44.42	23.64
MW-A5	67.84	43.24	24.60	No	ot Gauged	43.80	24.04
MW-C1	68.67	43.74	24.93	No	ot Gauged	44.45	24.22
OW-25	69.93	41.45	28.48	No	ot Gauged	42.33	27.60
OW-26	68.75	39.37	29.38	No	ot Gauged	Well	Obstructed
OW-27	70.73	42.27	28.46	No	ot Gauged	43.15	27.58
OW-28	68.65	39.12	29.53	No	ot Gauged	40.10	28.55

Groundwater Elevation Data Table for Calendar Year 2013

Hydraulic gradients were calculated where gauged wells were approximately located at each end of the flow lines depicted on the individual groundwater gradient maps for the March and August 2013 monitoring events.

<i>i</i> =	<u> </u>	Where:	Δh = change in hydraulic head
1-	Δd		Δd = change in distance between two known points

Gradient Measurement Line	Δh (feet)	Δd (feet)	i (feet/feet)	Monitoring Event
from well MW-15A to MW-A2	5.93	5686	0.0010	March 2013
from well MW-14 to MW-A2	5.57	5539	0.0010	August 2013

Estimated Flow Rate Calculations

The estimated groundwater flow rate was calculated for each monitoring event using the following formula:

× -	<u>ki</u>	Where:	v = flow rate
v =	n _e		k = hydraulic conductivity
			i – nyuraulić gradieni (above)
			n _e = effective porosity

Flow Rate Measurement Line	k (ft/min)	n _e	i (feet/feet)	v (feet/year)	Monitoring Event
from well MW-15A to MW-A2	3.80E-02	0.35	0.0010	59.56	March 2013
from well MW-14 to MW-A2	3.80E-02	0.35	0.0010	57.42	August 2013

Note: Hydraulic conductivity (k) and effective porosity (n_e) values as found in Attachment 5 of the Site Development Plan specifically, *Groundwater Characterization Report, August 2009 Revision*, by Hydrex Environmental, Inc. (page 4A)

Hydrex Environmental, Inc. TBPG Firm No. 50027

Groundwater Elevation Data Table for Calendar Year 2014

		Feb	ruary Event	Ν	lay Event	Au	August Event	
	Top of	Depth	-	Depth		Depth		
Well	Casing	To	Groundwater	To	Groundwater	To	Groundwater	
		(feet)	Elevation	(feet)	Elevation	(feet)	Elevation	
MW-10	69.08	44.39	24.69	N	ot Gauged	44.74	24.34	
MW-11	68.32	43.30	25.02	N	ot Gauged	42.91	25.41	
MW-12	67.51	40.72	26.79	N	ot Gauged	41.12	26.39	
MW-13	66.89	38.21	28.68	N	ot Gauged	38.92	27.97	
MW-14	66.56	37.80	28.76	N	ot Gauged	38.25	28.31	
MW-15A	67.57	C	bstructed	N	ot Gauged	38.71	28.86	
MW-16	65.69	37.12	28.57	N	ot Gauged	37.55	28.14	
MW-17	66.04	39.39	26.65	N	ot Gauged	39.87	26.17	
MW-18	66.22	40.75	25.47	40.96	25.26	41.17	25.05	
MW-19	66.76	41.92	24.84	N	ot Gauged	42.14	24.62	
MW-20	67.45	42.68	24.77	N	ot Gauged	42.45	25.00	
MW-21	67.26	41.07	26.19	N	ot Gauged	41.52	25.74	
MW-22	68.88	43.97	24.91	N	ot Gauged	44.36	24.52	
MW-23	69.75	44.39	25.36	44.59	25.16	44.83	24.92	
MW-24	69.66	43.77	25.89	N	ot Gauged	44.19	25.47	
MW-A2	68.06	44.62	23.44	N	ot Gauged	45.03	23.03	
MW-A5	67.84	44.13	23.71	N	ot Gauged	44.53	23.31	
MW-C1	68.67	44.68	23.99	N	ot Gauged	45.10	23.57	
OW-25	69.93	42.65	27.28	N	ot Gauged	43.10	26.83	
OW-26	68.75		Dry	Ν	ot Gauged	40.90	27.85	
OW-27	70.73	43.43	27.30	Ν	ot Gauged	44.00	26.73	
OW-28	68.65	40.40	28.25	N	ot Gauged	40.45	28.20	

Permit Application 1522B

Hydraulic gradients were calculated where gauged wells were approximately located at each end of the flow lines depicted on the individual groundwater gradient map for the February and August 2014 monitoring events.

<i>i</i> –	<u> </u>	Where:	Δh = change in hydraulic head
-	Δd		Δd = change in distance between two known points

Gradient Measurement Line	Δh (feet)	∆d (feet)	i (feet/feet)	Monitoring Event
from well MW-14 to MW-A2	5.32	5539	0.0010	February 2014
from well MW-15A to MW-A2	5.83	5686	0.0010	August 2014

Estimated Flow Rate Calculations

The estimated groundwater flow rate was calculated for each monitoring event using the following formula:

v =	<u>ki</u>	Where:	v = flow rate
v =	n _e		k = hydraulic conductivity
			i = hydraulic gradient (above)
			n _e = effective porosity

Flow Rate Measurement Line	k (ft/min)	n _e	i (feet/feet)	v (feet/year)	Monitoring Event
from well MW-14 to MW-A2	3.80E-02	0.35	0.0010	54.84	February 2014
from well MW-15A to MW-A2	3.80E-02	0.35	0.0010	58.55	August 2014

Note: Hydraulic conductivity (k) and effective porosity (n_e) values as found in Attachment 5 of the Site Development Plan specifically, *Groundwater Characterization Report, August 2009 Revision*, by Hydrex Environmental, Inc. (page 4A)

Hydrex Environmental, Inc. (TBPG Firm No. 50027)

February 2015 Event August 2015 Event October 2014 Event Top of Casing Depth To Water Well Depth To Groundwater Depth To Water Groundwater Groundwater Elevation Water (feet) Elevation (feet) Elevation (feet) Elevation 69.08 **MW-10** Not Gauged Not Determined Not Determined 68.32 MW-11 Not Gauged Not Determined Not Determined 67.51 **MW-12** Not Gauged Not Determined Not Determined 66.89 **MW-13** Not Gauged 38.93 27.96 37.60 29.29 66.56 MW-14 Not Gauged 38.35 28.21 37.10 29.46 Not Gauged **MW-15A** 67.57 38.9 28.67 38.1 29.47 37.53 35.80 Not Gauged **MW-16** 65.69 28.16 29.89 MW-17 66.04 40.00 26.04 38.75 27.29 Not Gauged 66.22 41.35 24.87 24.77 **MW-18** 41.45 40.35 25.87 66.76 42.68 **MW-19** 24.08 41.64 25.12 Not Gauged MW-20 67.45 Not Gauged 43.44 24.01 42.30 25.15 67.26 Not Gauged 41.70 MW-21 25.56 40.55 26.71 44.56 MW-22 68.88 Not Gauged 24.32 43.70 25.18 MW-23 69.75 Not Gauged Not Determined Not Determined Not Gauged MW-24 69.66 **Obstructed/Not Determined** Not Determined MW-A2 Not Gauged 68.06 45.34 22.72 44.05 24.01 MW-A5 67.84 Not Gauged 44.85 22.99 43.70 24.14 68.67 45.35 23.32 MW-C1 Not Gauged 44.10 24.57 Not Gauged **OW-25** 69.93 43.15 26.78 41.85 28.08 OW-26 68.75 41.50 27.25 Not Gauged Obstructed OW-27 70.73 43.92 26.81 42.70 Not Gauged 28.03 OW-28 Not Gauged 68.65 40.80 27.85 39.20 29.45

Groundwater Elevation Data Table

Hydraulic gradients were calculated where gauged wells were approximately located at each end of the flow lines depicted on the individual groundwater gradient maps for the February and August 2015 monitoring events.

1=	<u> </u>	Where:	Δh = change in hydraulic head		
1-	Δd		Δd = change in distance between two known points		

Gradient Measurement Line	Δh (feet)	Δd (feet)	i (feet/feet)	Monitoring Event
from well MW-15A to MW-A2	5.95	5686	0.0010	February 2015
from well MW-16 to MW-A2	5.88	4905	0.0012	August 2015

Where:

Estimated Flow Rate Calculations

The estimated groundwater flow rate was calculated for each monitoring event using the following formula:

$$v = \frac{ki}{n_e}$$

v = flow rate k = hydraulic conductivity i = hydraulic gradient (above) n_e = effective porosity

Flow Rate Measurement Line	k (ft/min)	n _e	i (feet/feet)	v (feet/year)	Monitoring Event
from well MW-15A to MW-A2	3.80E-02	0.35	0.0010	59.76	February 2015
from well MW-16 to MW-A2	3.80E-02	0.35	0.0012	68.46	August 2015

Note: Hydraulic conductivity (k) and effective porosity (n_e) values as found in Attachment 5 of the Site Development Plan specifically, *Groundwater Characterization Report, August 2009 Revision*, by Hydrex Environmental, Inc. (page 4A)

Hydrex Environmental, Inc. (TBPG Firm No. 50027)

	Top of	October 2015 Event		Februar	y 2016 Event	August 2016 Event		
Well	Casing Elevation	Depth To Water (feet)	Groundwater Elevation	Depth To Water (feet)	Groundwater Elevation	Depth To Water (feet)	Groundwater Elevation	
MW-10	71.38	Not	Gauged	46.00	25.38	45.75	25.63	
MW-11	72.50	Not	Gauged	46.80	25.70	46.45	26.05	
MW-12	72.41	Not	Gauged	45.20	27.21	44.96	27.45	
MW-13	66.89	Not	Gauged	38.00	28.89	37.96	28.93	
MW-14	66.56	Not	Gauged	37.45	29.11	37.39	29.17	
MW-15A	67.57	Not	Gauged	38.10	29.47	37.92	29.65	
MW-16	65.69	Not Gauged		36.70	28.99	36.57	29.12	
MW-17	66.04	Not Gauged		38.90	27.14	38.69	27.35	
MW-18	66.22	Not Gauged		40.15	26.07	39.87	26.35	
MW-19	66.76	Not Gauged		41.30	25.46	41.00	25.76	
MW-20	67.45	Not	Not Gauged		25.45	41.73	25.72	
MW-21	67.26	Not	Gauged	40.50	26.76	40.31	26.95	
MW-22	68.88	Not	Gauged	43.40	25.48	43.08	25.80	
MW-23	73.39	Not	Gauged	47.25	26.14	46.91	26.48	
MW-24	72.79	46.52	26.27	46.38	26.41	45.99	26.80	
MW-A2	68.06	Not	Gauged	43.75	24.31	43.34	24.72	
MW-A5	67.84	Not Gauged		43.35	24.49	42.89	24.95	
MW-C1	68.67	Not Gauged		43.80	24.87	43.48	25.19	
OW-25	69.93	Not Gauged		40.20	29.73	42.09	27.84	
OW-26	68.75	Not Gauged		40.10	28.65	40.01	28.74	
OW-27	70.73	Not	Gauged	43.00	27.73	42.92	27.81	
OW-28	68.65	Not	Gauged	40.00	28.65	39.98	28.67	

Groundwater Elevation Data Table

Approximate hydraulic gradients were calculated based on data presented on the individual groundwater gradient maps for the February and August 2016 monitoring events.

 $i = \frac{\Delta h}{\Delta d}$ Where: Δh = approximate change in hydraulic head between two known points Δd = approximate change in distance between two known points along flow paths

Gradient Measurement Line	Δh (feet)	Δd (feet)	i (feet/feet)	Monitoring Event
from well MW-15A to MW-A2	5.16	6097	0.0008	February 2016
from well MW-15A to MW-A2	4.93	6097	0.0008	August 2016

Where:

Estimated Flow Rate Calculations

The estimated groundwater flow rate was calculated for each monitoring event using the following formula:

$$v = \frac{ki}{n_e}$$

v = flow rate
k = hydraulic conductivity
i = hydraulic gradient (above)
n_e = effective porosity

Flow Rate Measurement Line	k (ft/min)	n _e	i (feet/feet)	v (feet/year)	Monitoring Event
from well MW-15A to MW-A2	3.80E-02	0.35	0.0008	48.33	February 2016
from well MW-15A to MW-A2	3.80E-02	0.35	0.0008	46.17	August 2016

Note: Hydraulic conductivity (k) and effective porosity (n_e) values as found in Attachment 5 of the Site Development Plan specifically, *Groundwater Characterization Report, August 2009 Revision*, by Hydrex Environmental, Inc. (page 4A)

Hydrex Environmental, Inc. (TBPG Firm No. 50027)

		Februar	y 2017 Event	April 2017 Event		ril 2017 Event August 2017 Ev	
Well	Top of Casing	Depth	Groundwator	Depth	Groundwator	Depth	Groundwator
	Elevation	Water	Flevation	Water	Flevation	Water	Flevation
		(feet)	Lievation	(feet)	Lievation	(feet)	Lievation
MW-10	71.38	45.50	25.88	Not	Gauged	45.50	25.88
MW-11	72.50	46.27	26.23	Not	Gauged	46.10	26.40
MW-12	72.41	44.85	27.56	Not	Gauged	44.55	27.86
MW-13	66.89	38.20	28.69	Not	Gauged	37.70	29.19
MW-14	66.56	37.22	29.34	Not	Gauged	37.00	29.56
MW-15A	67.57	37.80	29.77	Not	Gauged	37.50	30.07
MW-16	65.69	36.55	29.14	Not	Gauged	32.20	33.49
MW-17	66.04	38.44	27.60	Not	Gauged	38.20	27.84
MW-18	66.22	39.55	26.67	39.51	26.71	39.40	26.82
MW-19	66.76	40.70	26.06	Not	Gauged	40.55	26.21
MW-20	67.45	41.45	26.00	Not	Gauged	41.30	26.15
MW-21	67.26	40.00	27.26	39.95	27.31	39.85	27.41
MW-22	68.88	42.73	26.15	Not	Gauged	42.65	26.23
MW-23	73.39	46.75	26.64	Not	Gauged	47.10	26.29
MW-24	72.79	45.82	26.97	45.71	27.08	45.70	27.09
MW-A2	68.06	43.11	24.95	Not	Gauged	43.05	25.01
MW-A5	67.84	42.70	25.14	Not	Gauged	42.60	25.24
MW-C1	68.67	43.20	25.47	Not	Gauged	43.20	25.47
OW-25	69.93	42.00	27.93	Not	Gauged	41.70	28.23
OW-26	68.75	Not	Gauged	Not	Gauged	Not	Gauged
OW-27	70.73	42.72	28.01	Not	Gauged	43.21	27.52
OW-28	68.65	39.90	28.75	Not	Gauged	40.00	28.65

Groundwater Elevation Data Table

Approximate hydraulic gradients were calculated based on data presented on the individual groundwater gradient maps for the February and August 2017 monitoring events.

> Where Δh = approximate change in hydraulic head between two known points Δh i =Δđ

 Δd = approximate change in distance between two known points along flow paths

Gradient Measurement Line	Δh (feet)	∆d (feet)	i (feet/feet)	Monitoring Event
from well MW-15A to MW-A2	4.82	5899	0.0008	February 2017
from well MW-15A to MW-A2	5.06	5899	0.0009	August 2017

Estimated Flow Rate Calculations

The estimated groundwater flow rate was calculated for each monitoring event using the following formula:

$$v = \frac{ki}{n_e}$$

v = flow rate Where:

k = hydraulic conductivity i = hydraulic gradient (above)

n_e = effective porosity

Flow Rate Measurement Line	k (ft/min)	n _e	i (feet/feet)	v (feet/year)	Monitoring Event
from well MW-15A to MW-A2	3.80E-02	0.35	0.0008	46.66	February 2017
from well MW-15A to MW-A2	3.80E-02	0.35	0.0009	48.98	August 2017

Note: Hydraulic conductivity (k) and effective porosity (ne) values as found in Attachment 5 of the Site Development Plan specifically, Groundwater Characterization Report, August 2009 Revision, by Hydrex Environmental, Inc. (page 4A)

> Hydrex Environmental TBPG Firm No. 50027

	Top of	February 2018 Event		August	2018 Event
Well	Casing Elevation	Depth To Water (feet)	Groundwater Elevation	Depth To Water (feet)	Groundwater Elevation
MW-10	71.38	44.95	26.43	45.30	26.08
MW-11	72.50	45.65	26.85	45.96	26.54
MW-12	72.41	44.00	28.41	44.19	28.22
MW-13	66.89	37.00	29.89	36.90	29.99
MW-14	66.56	36.40	30.16	36.40	30.16
MW-15A	67.57	36.90	30.67	36.91	30.66
MW-16	65.69	35.55	30.14	35.52	30.17
MW-17	66.04	38.10	27.94	37.60	28.44
MW-18	66.22	38.90	27.32	39.22	27.00
MW-19	66.76	40.10	26.66	40.45	26.31
MW-20	67.45	40.85	26.60	41.20	26.25
MW-21	67.26	39.27	27.99	39.50	27.76
MW-22	68.88	42.10	26.78	42.50	26.38
MW-23	73.39	46.07	27.32	46.40	26.99
MW-24	72.79	Not	Gauged	Not	Gauged
MW-A2	68.06	43.10	24.96	43.04	25.02
MW-A5	67.84	42.15	25.69	42.56	25.28
MW-C1	68.67	42.70	25.97	43.10	25.57
OW-25	69.93	41.50	28.43	42.13	27.80
OW-26	68.75	Not	Gauged	Not	Gauged
OW-27	70.73	43.10	27.63	44.92	25.81
OW-28	68.65	39.95	28.70	40.67	27.98

Groundwater Elevation Data Table

Permit Application 1522	З
-------------------------	---

Groundwater Flow Rate Calculations

Approximate hydraulic gradients were calculated based on data presented on the individual groundwater gradient maps for the February and August 2018 monitoring events.

 $i = \frac{\Delta h}{\Delta d}$ Where: Δh = approximate change in hydraulic head between two known points Δd = approximate change in distance between two known points along flow paths

Gradient Measurement Line	Δh (feet)	Δd (feet)	i (feet/feet)	Monitoring Event
from well MW-15A to MW-A2	5.71	5899	0.0010	February 2018
from well MW-15A to MW-A2	5.64	5899	0.0010	August 2018

Where:

Estimated Flow Rate Calculations

The estimated groundwater flow rate was calculated for each monitoring event using the following formula:

$$v = \frac{ki}{n_e}$$

v = flow rate
k = hydraulic conductivity
i = hydraulic gradient (above)
n_e = effective porosity

Flow Rate Measurement Line	k (ft/min)	n _e	i (feet/feet)	v (feet/year)	Monitoring Event
from well MW-15A to MW-A2	3.80E-02	0.35	0.0010	55.27	February 2018
from well MW-15A to MW-A2	3.80E-02	0.35	0.0010	54.60	August 2018

Note: Hydraulic conductivity (k) and effective porosity (n_e) values as found in Attachment 5 of the Site Development Plan specifically, *Groundwater Characterization Report, August 2009 Revision*, by Hydrex Environmental, Inc. (page 4A)

Hydrex Environmental (TBPG Firm No. 50027)

	Top of	February	/ 2019 Event	August	2019 Event
Well	Casing Elevation	Depth To Water (feet)	Groundwater Elevation	Depth To Water (feet)	Groundwater Elevation
MW-10	72.09	44.47	27.62	45.39	26.70
MW-11	72.40	45.30	27.10	45.42	26.98
MW-12	71.69	43.87	27.82	43.30	28.39
MW-13	66.89	36.67	30.22	36.80	30.09
MW-14	66.56	36.19	30.37	36.20	30.36
MW-15A	67.57	36.73	30.84	36.77	30.80
MW-16	65.69	35.33	30.36	35.51	30.18
MW-17	71.73	Not	Gauged	42.77	28.96
MW-18	68.59	38.52	30.07	41.05	27.54
MW-19	69.72	39.71	30.01	42.81	26.91
MW-20	70.23	40.40	29.83	43.40	26.83
MW-21	67.26	39.06	28.20	39.05	28.21
MW-22	68.88	41.84	27.04	42.00	26.88
MW-23	72.11	45.33	26.78	44.70	27.41
MW-24	72.61	Not	Gauged	44.79	27.82
MW-A2	68.06	42.13	25.93	42.36	25.70
MW-A5	67.84	41.68	26.16	41.60	26.24
MW-C1	68.67	42.25	26.42	42.45	26.22
OW-25	69.93	40.93	29.00	39.99	29.94
OW-26	68.75	38.71	30.04	38.89	29.86
OW-27	72.74	Not	Gauged	44.15	28.59
OW-28	68.65	Not	Gauged	41.17	27.48

Groundwater Elevation Data Table

MICHELLE TRANSIER GEOLOGY 11360

TEOF

×

MW-A2 25.93

MW-A5

26.16

ONAL Y G 4-12-209

LEGEND

OFFSITE MONITOR WELL ONSITE MONITOR WELL

OBSERVATION WELL (\oplus)

GROUNDWATER CONTOUR -30 -

-->> APPROX. GROUNDWATER FLOW DIRECTION

POINT OF COMPLIANCE

ROADS

STRUCTURES

2-FT INDEX CONTOUR (FROM REPUBLIC, 2018)

DETENTION POND 6

WASTE CELL 1.1

PERMIT BOUNDARY

NOTES:

1. NAD 1927 STATEPLANE TEXAS SOUTH CENTRAL FIPS 4204

SCALE IN FEET

- 2. GROUNDWATER ELEVATIONS ARE IN FEET, MSL
- NG = NOT GAUGED 3.
- * NOT USED IN GROUNDWATER CONTOURING

Attachment 5-320

OW-26

30:04

OW-25

29.00

Future Trench #10

0

5A 🙆

0W-27

NG*

1,050

5B 3-05

NG*

Revision 0, March 28, 2022

City of Victoria Landfill MSW Permit No. 1522A

Groundwater Flow Rate Calculations

Approximate hydraulic gradients were calculated based on data presented on the individual groundwater gradient maps for the February and August 2019 monitoring events.

 $= \frac{\Delta h}{\Delta d}$ Where:

 Δh = approximate change in hydraulic head between two known points Δd = approximate change in distance between two known points along flow paths

Gradient Measurement Line	Δh (feet)	Δd (feet)	i (feet/feet)	Monitoring Event
from well MW-15A to MW-A2	4.91	5899	0.0008	February 2019
from well MW-12 to MW-A2	2.69	2856	0.0009	August 2019

Where:

Estimated Flow Rate Calculations

The estimated groundwater flow rate was calculated for each monitoring event using the following formula:

 $v = \frac{ki}{n_e}$

v = flow rate k = hydraulic conductivity i = hydraulic gradient (above) n_e = effective porosity

Flow Rate Measurement Line	k (ft/min)	n _e	i (feet/feet)	v (feet/year)	Monitoring Event
from well MW-15A to MW-A2	3.80E-02	0.35	0.0008	47.53	February 2019
from well MW-12 to MW-A2	3.80E-02	0.35	0.0009	53.79	August 2019

Note: Hydraulic conductivity (k) and effective porosity (n_e) values as found in Attachment 5 of the Site Development Plan specifically, *Groundwater Characterization Report, August 2009 Revision*, by Hydrex Environmental, Inc. (page 4A)

Hydrex Environmental (TBPG Firm No. 50027)

Permit Application 1522B

	Tank	Novemb	er 2019 Event	Februar	y 2020 Event	May 2	020 Event	August 202	0 Event
Well	Casing Elevation	Depth To Water (feet)	Groundwater Elevation	Depth To Water (feet)	Groundwater Elevation	Depth To Water (feet)	Groundwater Elevation	Depth To Water (feet)	Groundwater Elevation
MW-10	72.09	45.79	26.30	45.97	26.12	Not	Gauged	46.83	25.26
MW-11	72.40	45.70	26.70	45.92	26.48	46.29	26.11	47.50	24.90
MW-12	71.69	Not	Gauged	43.70	27.99	Not	Gauged	44.34	27.35
MW-13	66.89	37.08	29.81	37.37	29.52	37.80	29.09	38.44	28.45
MW-14	66.56	Not	Gauged	36.70	29.86	Not	Gauged	37.18	29.38
MW- 15A	67.57	Not	Gauged	37.21	30.36	Not	Gauged	37.66	29.91
MW-16	65.69	Not	Gauged	36.03	29.66	36.27	29.42	36.49	29.20
MW-17	71.73	Not	Gauged	43.19	28.54	Not	Gauged	43.66	28.07
MW-18	68.59	Not	Gauged	41.45	27.14	Not	Gauged	42.18	26.41
MW-19	69.72	Not	Gauged	43.28	26.44	Not	Gauged	43.97	25.75
MW-20	70.23	Not	Gauged	43.94	26.29	Not	Gauged	44.83	25.40
MW-21	67.26	Not	Gauged	39.52	27.74	Not	Gauged	40.15	27.11
MW-22	68.88	42.28	26.60	42.36	26.52	38.90	29.98	43.22	25.66
MW-23	72.11	Not	Gauged	45.15	26.96	Not	Gauged	46.13	25.98
MW-24	72.61	Not	Gauged	45.23	27.38	Not	Gauged	45.87	26.74
MW-A2	68.06	Not	Gauged	42.90	25.16	Not	Gauged	43.64	24.42
MW-A5	67.84	Not	Gauged	42.45	25.39	Not	Gauged	43.22	24.62
MW-C1	68.67	Not	Gauged	42.99	25.68	Not	Gauged	43.82	24.85
OW-25	69.93	Not	Gauged	41.46	28.47	Not	Gauged	42.08	27.85
OW-26	68.75	Not	Gauged	39.38	29.37	Not	Gauged	39.95	28.80
OW-27	72.74	Not	Gauged	44.64	28.10	Not	Gauged	45.13	27.61
OW-28	68.65	Not	Gauged	42.25	26.40	Not	Gauged	39.55	29.10

Groundwater Elevation Data Table

Groundwater Flow Rate Calculations

Approximate hydraulic gradients were calculated based on data presented on the individual groundwater gradient maps for the February and August monitoring events.

 $i = \frac{\Delta h}{\Delta d}$ Where: Δh = approximate change in hydraulic head between two known points Δd = approximate change in distance between two known points along flow paths

Gradient Measurement Line	Δh (feet)	Δd (feet)	i (feet/feet)	Monitoring Event
from well MW-12 to MW-A2	2.83	2856	0.0010	February 2020
from well MW-15A to MW-A2	5.49	5465	0.0010	August 2020

Where:

Estimated Flow Rate Calculations

The estimated groundwater flow rate was calculated for each monitoring event using the following formula:

 $v = \frac{ki}{n_e}$

v = flow rate k = hydraulic conductivity i = hydraulic gradient (above) n_e = effective porosity

Flow Rate Measurement Line	k (ft/min)	n _e	i (feet/feet)	v (feet/year)	Monitoring Event
from well MW-12 to MW-A2	3.80E-02	0.35	0.0010	56.58	February 2020
from well MW-15A to MW-A2	3.80E-02	0.35	0.0010	57.37	August 2020

Note: Hydraulic conductivity (k) and effective porosity (n_e) values as found in Attachment 5 of the Site Development Plan specifically, *Groundwater Characterization Report, August 2009 Revision*, by Hydrex Environmental, Inc. (page 4A)

Hydrex Environmental (TBPG Firm No. 50027)

	Top of	October 2	2020 Event	March	n 2021 Event	Septem	per 2021 Event			
Well	Casing Elevation	Depth To Water (feet)	Groundwate r Elevation	Depth To Water (feet)	Groundwater Elevation	Depth To Water (feet)	Groundwater Elevation			
MW-10	72.09	Not G	auged	47.09	25.00	45.87	26.22			
MW-11	72.40	46.76	25.64	46.80	25.60	45.89	26.51			
MW-12	71.69	Not G	auged	44.78	26.91	43.83	27.86			
MW-13	66.89	37.92	28.97	38.10	28.79	37.19	29.70			
MW-14	66.56	Not G	auged	37.48	29.08	36.43	30.13			
MW-15AR	67.57	Not G	auged	O	ostructed	36.95	30.62			
MW-16	65.69	Not G	auged	36.87	28.82	35.60	30.09			
MW-17	71.73	Not G	Not Gauged		25.55	42.86	28.87			
MW-18	68.59	Not G	Not Gauged		25.87	41.45	27.14			
MW-19	69.72	Not G	auged	44.45	25.27	43.25	26.47			
MW-20	70.23	Not G	auged	45.11	25.12	43.90	26.33			
MW-21	67.26	Not G	auged	40.63	26.63	39.55	27.71			
MW-22	68.88	Not G	auged	43.17	25.71	42.46	26.42			
MW-23	72.11	Not G	auged	46.60	25.51	45.30	26.81			
MW-24	72.61	46.03	26.58	46.38	26.23	45.40	27.21			
MW-A2	68.06	Not G	auged	43.82	24.24	42.73	25.33			
MW-A5	67.84	Not G	auged	43.86	23.98	42.40	25.44			
MW-C1	68.67	Not G	auged	44.15	24.52	42.85	25.82			
OW-25	69.93	Not G	auged	42.48	27.45	41.45	28.48			
OW-26	68.75	Not G	auged	40.19	28.56	39.21	29.54			
OW-27	72.74	Not G	auged	44.55	28.19	44.29	28.45			
OW-28	68.65	Not G	auged	40.22	28.43	38.70	29.95			

Groundwater Elevation Data Table

Groundwater Flow Rate Calculations

Approximate hydraulic gradients were calculated based on data presented on the individual groundwater gradient maps for the March and September monitoring events.

> Δh = approximate change in hydraulic head between two known points Where: Δh i = Δd = approximate change in distance between two known points along flow paths Ad

Gradient Measurement Line	Δh (feet)	Δd (feet)	i (feet/feet)	Monitoring Event
from well MW-14 to MW-A2	4.84	5329	0.0009	March 2021
from well MW-15AR to MW-A2	5.29	5466	0.0010	September 2021

Where:

Estimated Flow Rate Calculations

The estimated groundwater flow rate was calculated for each monitoring event using the following formula:

$$v = \frac{ki}{n_e}$$

v = flow rate

k = hydraulic conductivity

i = hydraulic gradient (above)

n_e = effective porosity

Flow Rate Measurement Line	k (ft/min)	n _e	i (feet/feet)	v (feet/year)	Monitoring Event
from well MW-14 to MW-A2	3.80E-02	0.35	0.0009	51.87	March 2021
from well MW-15AR to MW-A2	3.80E-02	0.35	0.0010	55.27	September 2021

Note: Hydraulic conductivity (k) and effective porosity (ne) values as found in Attachment 5 of the Site Development Plan specifically, Groundwater Characterization Report, August 2009 Revision, by Hydrex Environmental, Inc. (page 4A)

Hydrex Environmental (TBPG Firm No. 50027)

5-2021

APPENDIX 5J – HISTORICAL GROUNDWATER ELEVATIONS AND MONITORING DATA

Victoria Landfill Expansion

Victoria County, Texas

Well ID	MW-10	MW-11	MW-12	MW-13	MW-14	MW-15	MW-15A	MW-15AR	MW-16	MW-17	MW-18	MW-19	MW-20	MW-21	MW-22	MW-23	MW-24	OW-25	OW-26	OW-27	OW-28	A-2	A-5	C-1
Date Gauged										Gr	oundwater	Elevation (f	eet above n	nean sea le	vel)									
06/09-10/97		25.80	27.47	28.47	28.73	28.95			28.69	27.25	26.10	25.53	25.39											
09/02-03/97	25.35	25.78	27.41	28.62	28.91	29.12			28.84	27.28	26.14	25.59	25.40											
12/22-23/97		26.15	27.75	28.72	28.98	29.18			28.99	27.59	26.39	25.76	25.69											
03/23-24/98	25.73	26.18	27.65	28.81	29.05	29.32			28.87	27.60	26.46	25.91	25.77											
06/29-30/98	24.69	25.12	26.66	28.79	28.20	28.48			28.09	20.58	25.48	24.80	24.70											
09/21-22/90		20.42	20.90	20.40	20.70	20.95			20.59	20.00	20.72	20.14	24.90											
12/28-29/98	26.03	20.22	28.06	 20.17		29.56			20 50	28.05	26.84	26.09	25.71											
03/16-17/99	26.00	26.73	28.34	29.51	29.60	29.77			29.73	28.15	26.92	26.39	26.30											
09/07-08/99	25.92	26.34	27.99	29.27	29.56	29.74			29.52	27.93	26.72	26.20	25.97											
03/13-14/00	25.18	25.65	27.11	28.56	28.91	29.13			28.69	26.97	25.96	25.40	25.29											
08/21-22/00	24.76	25.26	26.83	28.34	28.65	28.75			28.44	26.69	25.55	24.96	24.81											
11/09/00		24.92				28.66							24.51											
05/24/01	24.68	25.15	26.56	28.03	28.37	28.56			28.05	26.54	25.48	24.86	24.75											
12/10/01	24.78	25.37		28.44	28.11	27.73			27.61	26.59	25.70	25.01	24.25											
02/26/02		25.22											24.67											
03/27-28/02	24.84	24.33	25.71	28.12	28.42	28.68			28.17	26.02	24.66	23.98	24.85											
09/03-04/02	24.61	25.12	26.84	27.08	28.36	28.53			26.99	25.63	25.37	24.84	24.66											
03/05-06/03	24.71	26.32	28.09	29.37	28.25	29.53			29.69	28.15	25.68	24.89	24.63											
06/23/03											25.22		 25 55											
03/17-18/04	25.06	25.97	27.41	20.79	20.30	20.91			20.07	20.09	20.22	25.00	25.55											
07/09/04	23.00	20.00	20.09	20.47	20.20	23.02			20.74	20.00	27.30	23.30	20.44											
09/08-09/04	25.78	26.94	28.22	30.53	30.26	29.66			31.06	27.88	27.49	25.76	26.87											
03/22-23/05	27.15	27.46	28.88	31.41	30.90	30.81			30.59	28.52	27.75	27.62	27.19											
10/05-06/05	27.13	27.46	28.74	30.54	30.63	30.79			30.34	28.90	27.93	27.32	27.20											
03/06-07/06	26.10	27.10	28.55	30.14	30.42	30.91			30.12	28.50	27.48	26.89	26.80											
09/11-12/06	26.38	29.50	34.23	30.47	30.71	30.88			29.55	27.88	27.02	26.56	26.41											
03/19-20/07	26.98	27.52	29.04	30.85	30.98	31.10			30.84	28.99	27.84	27.12	27.00											
06/25-26/07	27.53	27.90	29.51	31.37	31.29	31.53			31.02	29.24	28.00	27.66	27.42											
09/24-25/07	24.48	29.06	30.71	33.31	32.63	32.51			32.34	30.13	26.15	26.25	28.58											
12/17/07	28.70	29.21	30.64	31.95	31.68	32.22			31.91	30.37	29.34	28.86	28.80											
03/17/08	28.71	29.02	30.38	31.68	32.04	32.20			31.67	30.20	29.31	28.77	28.69											
04/15/08	28.04				31.81						29.20													
09/22/08	20.20	20.73	30.17	31.04	31.72	31.95			31.50	20.01	29.07	20.02	28.05											
03/16/09	27.30	27.73	29.45	30.94	31.23	31.45			30.96	29.73	28.05	27.88	27.38											
08/05/09	26.69	27.33	29.13	30.80	31.04	31.23			30.83	28.97	27.73	27.17	27.06											
03/15/10	26.83	27.32	29.14	30.91	31.08				31.23	28.99	27.65	27.04	27.02											
06/08/10	26.98	27.43	29.11	30.75	30.97		31.26		30.88	28.97	27.77	27.19	27.17	28.42	27.27	27.85	28.27	29.72	30.46	29.55	30.45			
07/06/10	27.00	27.45	29.11	30.75	30.94		31.18		30.89	28.84	27.76	27.18	27.14	28.39	27.25	27.83	28.25	29.68	30.43	29.53	30.47			
09/20/10	27.43	27.86	29.75	31.70	31.65		31.76		32.14	29.47	28.16	27.53	27.49	28.84	27.62	28.25	28.72	30.52	31.57	30.39	32.06			
01/18/11	27.95	28.40	29.97	31.37	31.60		31.79		31.30	29.80	28.68	28.13	28.09	29.30	28.20	28.77	29.18	30.42	31.08	30.35	30.94			
02/21-22/11	27.47	27.92	29.60	31.19	31.39		31.65		31.23	29.56	28.26	27.73	27.65	28.92	27.79	28.26	28.71	30.24	30.92	30.02	30.84			
03/07/11	27.63	28.11	29.72	31.18	31.40		31.64		31.19	29.51	28.38	27.82	27.79	28.98	27.88	28.47	28.90	30.24	30.89	30.07	32.26	26.41	26.63	26.90
03/09/11							31.52																	
00/10/11	26.77	27.00	29.23	30.69	31.09		obstructed		30.00	29.04 28.70	27.90	26.70	21.23	20.00	26.86	27.00	20.34 27.07	29.70 20.29	30.39	29.57 20.19	30.31	25.95	20.27	20.49
12/12/11	26.36	26.72	28.58	30.26	30.46		obstructed		30.25	28.34	27.40	26.46	26.45	27.90	26.57	26.02	24.67	28.91	obstructed	28.85	29.73	20.00	25.04	25.51
03/05/12	26.00	26.37	28.26	30.01	30.21		obstructed		30.06	28.04	26.76	26.11	26.09	27.56	26.21	26.70	27.32	28.68	obstructed	28.63	29.59	24.79	25.19	25.37
06/05/12	25.93	26.23	28.04	29.73	30.07		30.47		29.81	27.86	26.60	26.01	25.95	27.33	26.09	26.59	27.16	28.51	29.40	28.41	29.36	24.63	25.08	25.15
09/18-20/12	25.63	25.91	27.81	29.54	29.78		30.27		29.69	27.69	26.32	26.71	25.63	26.26	25.81	26.26	26.83	28.33	obstructed	28.28	29.25	24.29	24.69	24.86
03/04/13	25.63	25.99	27.91	29.55	29.82		30.22		29.82	27.74	26.45	25.79	25.73	27.21	25.90	26.43	27.01	28.48	29.38	28.46	29.53	24.29	24.60	24.93
05/29/13							29.72							26.90										
08/19/13	25.03	25.27	27.16	28.84	29.21		obstructed		29.04	27.04	25.77	25.16	24.95	26.61	25.26	25.62	26.24	27.60	obstructed	27.58	28.55	23.64	24.04	22.22
02/11/14	24.69	25.02	26.76	28.68	28.76		obstructed		28.57	26.65	25.47	24.84	24.77	26.19	24.91	25.36	25.89	27.28	dry	27.30	28.25	23.44	23.93	23.99
05/12/14											25.27					25.16	05.45	00.00	07.07	00 -0			00.01	00.5-
08/04/14	24.34	25.41	26.39	27.97	28.31		28.86		28.14	26.17	25.05	24.62	25.00	25.74	24.52	24.92	25.47	26.83	27.85	26.73	28.20	23.03	23.31	23.57
10/30/14											24.87			 25 56				 26 70		 26.01	 27.05			
02/03/15	10.91	19.71	21.02	20.20	20.21		20.07		20.10	20.04 27.20	24.//	24.08 25.12	24.01 25.15	25.00	14.47 25.10	19./3		20.10 28.09	21.20	20.01	21.00	22.12	22.99	23.32
10/2015					20.40 				23.08								26.31	20.00			23.4J 			2 4 .J/
02/08/16	25.38	25.70	27.21	28.89	29.11		29.47		28.99	27.14	26.07	25.46	25.45	26.76	25.48	26.14	26.41		28.65	27.73	28.65	24.31	24.49	24.87
8/8/2016	25.63	26.05	27.45	28.93	29.17		29.65		29.12	27.35	26.35	25.76	25.72	26.95	25.80	26.48	26.80	27.84	28.74	27.81	28.67	24.72	24.95	25.19
P				-	-	-	-		-		-	-	-		-	-	-		-	-	-	-	-	-

Historical Groundwater Elevations - Landfill Monitoring Network

Victoria Landfill Expansion

Victoria County, Texas

Well ID	MW-10	MW-11	MW-12	MW-13	MW-14	MW-15	MW-15A	MW-15AR	MW-16	MW-17	MW-18	MW-19	MW-20	MW-21	MW-22	MW-23	MW-24	OW-25	OW-26	OW-27	OW-28	A-2	A-5	C-1
Date Gauged										Gr	oundwater	Elevation (f	eet above n	nean sea lev	vel)									
2/6/2017	25.88	26.23	27.56	28.69	29.34		29.77		29.14	27.60	26.67	26.06	26.00	27.26	26.15	26.64	26.97	27.93		28.01	28.75	24.95	25.14	25.47
04/2017											26.71			27.31			27.08							
8/2/2017	25.88	26.40	27.86	29.19	29.56		30.07			27.84	26.82	26.21	26.15	27.41	26.23	26.29	27.09	28.23		27.52	28.65	25.01	25.24	25.47
2/5/2018	26.43	26.85	28.41	29.89	30.16		30.67		30.14	27.94	27.32	26.66	26.60	27.99	26.78	27.32		28.43		27.63	28.70	24.96	25.69	25.97
8/13/2018	26.08	26.54	28.22	29.99	30.16		30.66		30.17	28.44	27.00	26.31	26.25	27.76	26.38	26.99		27.80		25.81	27.98	25.02	25.28	25.57
8/19/2019	25.03	25.27	27.16	28.84	29.21				29.04	27.04	25.77	25.16	24.95	26.61	25.26	25.62	26.24	27.60		27.58	28.55	23.64	24.04	24.22
2/12/2019	26.91	27.20	28.54	30.22	30.37		30.84		30.36		27.70	27.05	27.05	28.20	27.04	28.06		29.00	30.04			25.93	26.16	26.42
8/6/2019	26.70	26.98	28.39	30.09	30.37		30.80		30.18	28.96	27.54	26.91	26.83	28.21	26.88	27.41	27.82	29.94	29.86	28.59	27.48	25.70	26.24	26.22
2/25/2020	26.12	26.48	27.99	29.52	29.86		30.36		29.66	28.54	27.14	26.44	26.29	27.74	26.52	26.96	27.38	28.47	29.37	28.10	26.40	25.16	25.39	25.68
8/4/2020	25.26	24.90	27.35	28.45	29.38		29.91		29.20	28.07	26.41	25.75	25.40	27.11	25.66	25.98	26.74	27.85	28.80	27.61	29.10	24.42	24.62	24.85
3/1/2021	25.00	25.60	26.91	28.79	29.08		obstructed		28.82	25.55	25.87	25.27	25.12	26.63	25.71	25.51	26.23	27.45	28.56	28.19	28.43	24.24	23.98	24.52
9/2021	26.22	26.51	27.86	29.70	30.13			30.62	30.09	28.87	27.14	26.47	26.33	27.71	26.42	26.81	27.21	28.48	29.54	28.45	29.95	25.33	25.44	25.82

CREATE AMAZING.

ATTACHMENT 6 – GROUNDWATER SAMPLING AND ANALYSIS PLAN

Part III Landfill Permit Amendment Attachment 6 – Groundwater Sampling and Analysis Plan and Groundwater Monitoring Plan TCEQ MSW Permit No. 1522B

City of Victoria, Texas

City of Victoria Landfill Lateral and Vertical Expansion Project No. 107608

Revision 0, March 28, 2022

Part III Landfill Permit Amendment Attachment 6 – Groundwater Sampling and Analysis Plan and Groundwater Monitoring Plan TCEQ MSW Permit No. 1522B

prepared for

City of Victoria, Texas City of Victoria Landfill Lateral and Vertical Expansion Victoria County, Texas

Project No. 107608

Revision 0, March 28, 2022

prepared by

Burns & McDonnell Engineering Company, Inc. Austin, Texas Texas Firm Registration No. F-845 / 50338

TABLE OF CONTENTS

Page No.

2.0	GRO	UNDWA	ATER SAMPLING AND ANALYSIS PLAN	2
8.0	GRO		ATER MONITORING PLAN	
	3.1	Site Co	onditions	3
		3.1.1	Plume of Contamination	3
		3.1.2	Contaminant Pathway Analysis	3
	3.2	Ground	lwater Monitoring System	4
		3.2.1	Design Criteria	4
		3.2.2	Monitoring Well Locations	5
		3.2.3	Monitoring Well Design and Construction	6
	3.3	Ground	7	
		3.3.1	Background Samples	7
		3.3.2	Detection Monitoring	7
		3.3.3	Assessment Monitoring	8
		3.3.4	Corrective Action Program	9

APPENDIX 6A – GROUNDWATER SAMPLING AND ANALYSIS PLAN APPENDIX 6B – PROPOSED MONITORING WELL CONSTRUCTION DETAILS APPENDIX 6C – ASSESSMENT MONITORING CONSTITUENTS

LIST OF ABBREVIATIONS

Abbreviation	<u>Term/Phrase/Name</u>
CFR	Code of Federal Regulations
GMP	Groundwater Monitoring Plan
GWPS	groundwater protection standard
GWSAP	Groundwater Sampling and Analysis Plan
μg/L	micrograms per liter
SSI	statistically significant increase
TAC	Texas Administrative Code
VOC	volatile organic compound

1.0 INTRODUCTION

This Groundwater Sampling and Analysis Plan (GWSAP) and Groundwater Monitoring Plan (GMP) has been prepared to support completion of the requirements of Texas Administrative Code (TAC) Title 30 Chapter 330 Rule 63(f) (30 TAC §330.63(f)) for the City of Victoria (City) Landfill (Landfill). This document includes establishment of a groundwater monitoring program. A copy of this document will be placed in the facility's operating record upon document approval by the TCEQ. The groundwater monitoring program for the existing unit is not modified by this GMP, except for removal of wells related to construction of the Landfill expansion.

2.0 GROUNDWATER SAMPLING AND ANALYSIS PLAN

The existing GWSAP (Weaver Boos Consultants, LLC-Southwest, 2013) for the City of Victoria Landfill unit was prepared in accordance 30 TAC §330.401 through §330.421 and will be adopted for groundwater monitoring for the existing Landfill and Landfill expansion area. The GWSAP is included as Appendix 6A.

The GWSAP describes the consistent collection, processing, and analysis of groundwater samples and the basic laboratory requirements for obtaining valid, defensible data. The purpose of the GWSAP, in accordance with the requirements set forth in 30 TAC §330.405, is to establish the standards and practices for compliance with the landfill's permit specifications and to obtain samples that are representative of the groundwater present in the geologic formation sampled by the monitoring wells. The GWSAP also generally describes the purpose and procedures for quality assurance, quality control, statistical analysis, and reporting of the results of groundwater monitoring samples collected for the purpose of groundwater monitoring at the waste management unit.

3.0 GROUNDWATER MONITORING PLAN

3.1 Site Conditions

The following information is provided in accordance with 30 TAC §330.63(f). Figure 6B-1 included in Appendix 6B presents the property boundary, delineation of the waste management area, the proposed points of compliance, proposed monitoring wells, and the extent of the contaminant plume.

3.1.1 Plume of Contamination

Sample results from the March 2021 semiannual monitoring event for the Landfill indicated arsenic exceeded its groundwater protection standard (GWPS) (10 micrograms per liter [μ g/L]) in four monitoring wells (MW-18 [21 μ g/L]; MW-19 [14 μ g/L]; MW-20 [250 μ g/L]; and MW-21 [73 μ g/L]) (Hydrex, 2021). No other constituents exceeded their respective GWPSs in March 2021. Volatile organic compound (VOC) detections in March 2021 included chlorobenzene, p-dichlorobenzene, and cis-1,2-dichloroethylene, all at concentrations less than their respective GWPSs (Hydrex, 2021).

Previous findings indicate landfill gas, not a release of leachate, is the cause of the VOC concentrations and arsenic concentrations reported for the Landfill (Hydrex, 2011 and Hydrex, 2021).

Historical monitoring data from monitoring wells in the groundwater monitoring program are included in the Geology Report (Part III, Attachment 5, Appendix 5J).

3.1.2 Contaminant Pathway Analysis

Discussion of site geology and hydrogeology is included in the Geology Report (Part III, Attachment 5). Groundwater flow direction at the site in the upper groundwater-bearing unit is generally from the northeast to the southwest. Previous construction activities and associated dewatering for the existing Landfill cells temporarily affected groundwater flow direction at the site (inward gradient toward the construction area). Similar temporary influence on groundwater flow is anticipated during future construction activities. Upon completion of construction and associated dewatering activities, groundwater flow direction in the upper groundwater-bearing unit is anticipated to continue in a northeast to southwest direction.

The elevation of deepest excavation for Landfill expansion area will extend into sands of the upper groundwater-bearing unit. Discussion of the elevation of the deepest proposed excavation is included in Section 4.3 of the Part III Landfill Permit Amendment. In the event of a potential release from the landfill, the underlying sands will provide a contaminant pathway to the uppermost groundwater. This

potential contaminant pathway is addressed in the engineering and design of the future landfill cells and the design of the groundwater monitoring system.

3.2 Groundwater Monitoring System

The existing groundwater monitoring system consists of 18 monitoring wells and four observation wells installed in the upper groundwater-bearing unit. Detection, assessment, and corrective action groundwater monitoring is performed semiannually in accordance with the facility's GWSAP and 30 TAC §330 Subchapter J. The monitoring status of the wells as of March 2021 is as follows:

- Detection monitoring: MW-10, MW-11, MW-12, MW-13, MW-14, MW-15A, MW-16, MW-17, MW 22, and MW-23
- Assessment monitoring: MW-21 and MW-24
- Corrective action monitoring: MW-18, MW-19, MW-20, MW-A2, MW-A5, and MW-C1
- Water level gauging only: OW-25, OW-26, OW-27, and OW-28

The proposed groundwater monitoring system for the Landfill expansion area is presented in the following sections.

3.2.1 Design Criteria

In accordance with 30 TAC §330.403(a) and (e), a groundwater monitoring system must be installed that consists of a sufficient number of monitoring wells installed at appropriate locations and depths to yield representative samples from the uppermost aquifer. The design of the system shall be based on site-specific technical information that includes a thorough characterization of aquifer thickness, groundwater flow rate, groundwater flow direction, including seasonal and temporal fluctuations in flow, effect of site construction and operations on groundwater flow direction and rates, and thickness, stratigraphy, lithology and hydraulic characteristics of saturated and unsaturated geologic units and fill materials overlying the uppermost aquifer, materials of the uppermost aquifer, and materials of the lower confining unit underlying the uppermost aquifer. Subsurface characterization of the Landfill expansion area is included in the Geology Report (Part III, Attachment 5).

The facility must notify the Executive Director if changes in site construction or operation or changes in adjacent property affect or are likely to affect the direction and rate of groundwater flow and the potential for detecting groundwater contamination from the facility.

The groundwater monitoring system was designed and is operated in accordance with the above regulations and was certified by a qualified groundwater scientist.

3.2.2 Monitoring Well Locations

Groundwater monitoring will be conducted under the GWSAP. The monitoring wells and observation wells included in the existing program will not be modified, except for removal of wells MW-16 and OW-28 (as described below) related to construction for the Landfill expansion area.

The revised groundwater monitoring system related to the Landfill expansion area will consist of 21 new permanent monitoring wells (MW-29 through MW-49) and two new temporary monitoring wells (MW TMP-1 and MW-TMP-2) installed at 600-foot spacing around the perimeter of the Landfill. Five existing monitoring and observation wells located between the existing Landfill and the Landfill expansion area will remain in place (MW-17, MW-18, MW-21, MW-22, and OW-27). One monitoring well (MW-16) and one observation well (OW-28) located within the construction area of Landfill expansion area will be plugged and abandoned in accordance with 16 TAC §76.702 and §76.1004 upon written authorization from the TCEQ. Monitoring well locations are depicted on Figure 6B-1 included in Appendix 6B.

Installation of monitoring wells for the revised groundwater monitoring system related to the Landfill expansion area will be phased in coordination with the order of cell construction presented in Section 4.3 of the Part III Landfill Permit Amendment. Waste placement in the Landfill expansion area is planned to progress from Cell G2 through Cell A1, then Cell H2 through Cell I2. Monitoring Wells MW-29 through MW-41 and Temporary Monitoring Wells MW TMP-1 and MW-TMP-2 (located at the boundary of Cells C2 and D1) will be installed to provide groundwater monitoring of Cells D1 through I2. Monitoring Wells MW-49 will be installed and Temporary Monitoring Wells MW TMP-1 and MW-TMP-2 will be abandoned in coordination with construction of Cells A1 through C2.

During the operation of Cells D1 through G2, eight new monitoring wells (MW 29, MW-30, MW-31, MW-32, MW-33, MW-34, MW-35, and MW-36) and one existing monitoring well (MW-15A) will be considered upgradient and seven new monitoring/temporary monitoring wells (MW-37, MW-38, MW-39, MW-40, MW-41, MW TMP-1, and MW-TMP-2) and four existing monitoring/observation wells (MW-17, MW-18, MW-21, and OW-27) will be considered downgradient/point of compliance. Upon construction of Cells A1 through C2, Temporary Monitoring Wells MW-TMP-1 and MW-TMP-2 will be removed, and eight additional new monitoring wells (MW-42, MW-43, MW-44, MW-45, MW-46, MW-47, MW-48, and MW-49) and one existing monitoring well (MW-22) will be considered downgradient/point of compliance. Upon construction of Cells H1 through I2, four monitoring wells (MW-15A, MW-29, MW-35, and MW-36) previously considered upgradient monitoring wells will be converted to be considered downgradient/point of compliance monitoring wells.

3.2.3 Monitoring Well Design and Construction

Monitoring well design and construction will be in accordance with 30 TAC §330.421. Wells will be drilled by a Texas-licensed driller using methods that will not introduce contaminants into the borehole or casing. A licensed professional geoscientist or engineer who is familiar with the geology of the area will supervise monitoring well installation and development and will provide a log of the boring. Future monitoring well construction details are presented on Figure 6B-2 included in Appendix 6B. Monitoring well construction will be completed in accordance with 30 TAC §330.403, and §330.421.

If any fluid is required in the drilling of monitoring wells, treated, potable water from the City of Victoria shall be used and a chemical analysis provided to the TCEQ. No glue or solvents will be used in monitoring well construction.

Monitoring wells will be developed to remove drilling artifacts (fine particles and sediment) from the well screen and filter pack and increase hydraulic connection between the water-bearing zone and the well. Development will continue until the water used or affected during drilling activities is removed and field measurements of pH, specific conductance, and temperature are stabilized.

When monitoring wells are installed in unusual conditions that vary from 30 TAC §330.421, all aspects of the installation that vary from 30 TAC §330.421 must be approved in writing by the TCEQ.

A Texas registered professional land surveyor will survey the well location (latitude and longitude at least to the nearest tenth of a second or accurately located with respect to the landfill grid system) and top of well casing and ground surface elevation (to the nearest 0.01 foot above mean sea level). The point of the elevation datum will be permanently marked on the well casing and well pad.

Reporting of monitoring well installation and construction will be submitted to the TCEQ within 60 days of well completion, including Texas Commission on Environmental Quality forms, applicable forms required by other agencies, geologic logs, description of development procedures, sample data, site map showing monitoring well locations and relevant point of compliance.

Monitoring wells identified as being damaged and that are no longer usable will be reported to the TCEQ to determine whether to replace or repair the well. In accordance with 30 TAC §305.70, if a compromised well requires replacement a permit modification request will be submitted to the TCEQ within 45 days of the discovery.

Plugging and abandonment of monitoring wells will be performed as needed in accordance with 16 TAC §76.702 and §76.1004. No abandonment will be performed without prior written authorization from the TCEQ.

All parts of the groundwater monitoring system shall be operated and maintained so that they perform at least to design specifications through the life of the groundwater monitoring program.

The owner or operator shall promptly notify the TCEQ, and any local pollution agency with jurisdiction that has requested to be notified, in writing of changes in facility construction or operation or changes in adjacent property that affect or are likely to affect the direction and rate of groundwater flow and the potential for detecting groundwater contamination from a solid waste management unit and that may require the installation of additional monitoring wells or sampling points (additional wells or sampling points require a modification of the Site Development Plan).

3.3 Groundwater Monitoring Program

The GWSAP and GMP describe the groundwater monitoring program under 30 TAC §330.405 as well as the proposed sampling, analysis, and statistical comparison procedures. Groundwater monitoring will be conducted throughout the active life and any required post-closure care period of the waste management unit.

3.3.1 Background Samples

Background groundwater quality will be established for the monitoring parameters and constituents listed in 40 Code of Federal Regulations (CFR) Part 258, Appendix I and 30 TAC §330.419 (see Table 1 of GWSAP) for the 21 new permanent monitoring wells and two new temporary monitoring wells prior to placement of waste in the Landfill expansion area. A minimum of four statistically independent samples for VOC analysis and a minimum of eight statistically independent samples for remaining parameters will be collected from each newly installed well on a quarterly basis to allow for hydraulic and chemical stabilization of groundwater between sampling events and allow evaluation of potential seasonal variation in groundwater quality. Procedures for statistical evaluation of groundwater samples are included in the GWSAP (see Appendix 6A).

3.3.2 Detection Monitoring

After establishment of background values, detection monitoring of newly installed wells will be conducted on a semiannual basis for constituents listed in 40 CFR Part 258, Appendix I and 30 TAC §330.419 (see Table 1 of the GWSAP) unless otherwise approved by the TCEQ.

Within 60 days of each sampling event, it will be determined if a statistically significant increase (SSI) over background values has occurred for any constituent. The TCEQ and any local pollution agency with jurisdiction that has requested to be notified, shall be notified in writing within 14 days of determination of a SSI, and an assessment monitoring program shall be established within 90 days of determination of a SSI. Discussion of detection monitoring sampling, reporting, and statistical analysis is included in Sections 4 and 5 of the GWSAP (see Appendix 6A).

A permit amendment or modification will be submitted within 90 days if it is determined that detection monitoring no longer satisfies 30 TAC §330.407.

3.3.3 Assessment Monitoring

If hazardous constituents listed in 40 CFR Part 258, Appendix I, and 30 TAC §330.419 (see Table 1 of the GWSAP) are detected in the future, and if the detections support the implementation of assessment monitoring (SSI over background), information to establish an assessment monitoring program under 30 TAC §330.409 will be submitted to the TCEQ, including a description of special wastes previously handled at the landfill and a characterization of the contaminated groundwater, including any detected concentration(s) of assessment constituents defined in 30 TAC §330.409.

Should SSIs of hazardous constituents be detected in the future groundwater monitoring events and absent an alternate source demonstration, a notice will immediately be placed in the operating record describing the SSI and an assessment monitoring program will be established in accordance with 30 TAC \$330.409, including sampling for constituents listed in Appendix II to 40 CFR Part 258 (see Appendix 6C) using the procedures described in the GWSAP. Within 90 days of a SSI during detection monitoring and at least annually thereafter, a minimum of one sample will be collected from point of compliance wells for the full set of constituents listed in Appendix II to 40 CFR Part 258 (see Appendix 6C) (following the initial sampling, subsequent assessment monitoring may sample a subset of locations and/or constituents, or may be conducted at an alternate frequency, upon the approval of the TCEQ). Background concentrations and GWPSs will be established for detected Appendix II constituents in accordance with 30 TAC §330.409(d)(2) and (3), §330.409(h), §330.409(i), and §330.409(j). Results will be submitted to the TCEQ within 60 days of sampling, and the TCEQ and appropriate local government officials will be notified within seven days of determination of statistical exceedances of GWPSs and background concentrations. If Appendix II constituent concentrations are less than or equal to background for two consecutive events, then detection monitoring may resume upon approval from the TCEQ. Assessment monitoring will continue if Appendix II constituent concentrations exceed background but are less than GWPSs. If Appendix II constituent concentrations exceed the GWPS, an alternate source

demonstration may be made that the exceedance is due to a source other than the waste management unit, natural variation in groundwater quality, or an error in sampling, analysis, or evaluation. If a successful demonstration is made in accordance with 30 TAC §330.409(g)(2) and (3), assessment monitoring will continue. If Appendix II constituent concentrations exceed the GWPS and a successful demonstration is not made, additional groundwater characterization, well installation, notifications, and assessment of corrective measures will be initiated in accordance with 30 TAC §330.409(g)(1).

An annual assessment monitoring report will be submitted with 60 days of the second semiannual groundwater monitoring event in a calendar year and will include the items included in Section 4.3 of the GWSAP and 30 TAC §330.409(k) for the calendar year represented by the annual report.

A permit amendment or modification will be submitted within 90 days if it is determined that assessment monitoring no longer satisfies 30 TAC §330.409.

3.3.4 Corrective Action Program

If hazardous constituents are detected in future groundwater monitoring events above the concentration limits (GWPSs) established in 30 TAC §330.409, and absent an alternate source demonstration, then information, data, and analysis to establish a corrective action program meeting the requirements of 30 TAC §330.411 and §330.413 will be submitted to the TCEQ, including a description of special wastes previously handled at the landfill and a characterization of the contaminated groundwater, including any detected concentration(s) of assessment constituents included in 30 TAC §330.409. The corrective action program will be implemented in accordance with 30 TAC §330.415.

Detailed plans and an engineering report describing the corrective action to be taken will be addressed if hazardous constituents have been measured in the groundwater at levels exceeding the limits (GWPSs) established in 30 TAC §330.409. The following will be submitted in establishing a corrective action program to comply with 30 TAC §330.411:

- Characterization of the contaminated groundwater, including concentrations of assessment constituents included in 30 TAC §330.409
- The concentration limit (GWPS) for each constituent found in the groundwater
- Detailed plans and an engineering report describing the corrective action to be taken
- A description of how the groundwater monitoring program will demonstrate the adequacy of the corrective action
- A schedule for submittal of the information required

4.0 **REFERENCES**

- Hydrex Environmental, Inc. (2011, August). Report on Assessment of Corrective Measures for Exceedances of Arsenic in Groundwater, Victoria Landfill, MSW Permit No. 1522A, Victoria County, Texas.
- Hydrex Environmental, Inc. (2021, April). 1st 2021 Semi-Annual Detection, Assessment, and Corrective Action Groundwater Monitoring Report, City of Victoria Landfill, MSW Permit No. 1522A, Victoria County, Texas.
- Weaver Boos Consultants, LLC-Southwest. (2013, August). *City of Victoria Landfill, Victoria County, Texas, TCEQ MSW Permit No. 1522-A, Groundwater Sampling and Analysis Plan (GWSAP).*

APPENDIX 6A – GROUNDWATER SAMPLING AND ANALYSIS PLAN

Bryan W. Shaw, Ph.D., *Chairman* Toby Baker, *Commissioner* Zak Covar, *Executive Director*

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

Protecting Texas by Reducing and Preventing Pollution

September 30, 2013

Ms. Charmelle Garrett City Manager City Hall 105 W. Juan Linn City of Victoria Victoria, Texas 77902-1758

Re: City of Victoria Landfill - Victoria County Municipal Solid Waste - Permit No. 1522A Permit Modification – Purge Water Requirements and Cost Estimates for Closure and Postclosure Care Tracking No. 17444629; RN102112968/CN600132534

Dear Ms. Garrett:

We have reviewed your application for a municipal solid waste permit modification dated August 1, 2013, requesting an update to the existing Site Development Plan, and the Site Operating Plan for revised closure and postclosure care cost estimates and changes to the handling and disposal of purge water. The information presented is technically sufficient for a municipal solid waste permit modification.

Enclosed is a copy of the above referenced modification which is now part of your permit and should be attached thereto as part of Attachment B. The documentation prepared and submitted to support the modification request shall be considered as requirements of the permit. The facility is responsible for compliance with any applicable air requirements.

If you have questions concerning this matter, please contact Mr. Greg Charles at (512) 239-4638. When addressing written correspondence, please use mail code MC 124.

This action is taken under authority delegated by the Executive Director of the Texas Commission on Environmental Quality.

Sincerely,

1. M. Thm

Christine M. Bergren Manager, Municipal Solid Waste Permits Section Waste Permits Division

CMB/GC/dp

cc: Mr. Kyle D. Gould, P.E., Weaver Boos Consultants, LLC, Southwest

Enclosure

P.O. Box 13087 • Austin, Texas 78711-3087 • 512-239-1000 • tceq.texas.gov

How is our customer service? tceq.texas.gov/customersurvey

printed on recycled paper Attachment 6-12
Texas Commission on Environmental Quality

Modification to Municipal Solid Waste Permit No. 1522A City of Victoria Landfill

Municipal Solid Waste Permit No. 1522A is hereby modified as follows:

Description of Change:

This modification authorizes an update to the existing closure and postclosure care cost estimates and changes to the handling and disposal of purge water.

The details of this permit modification are contained in the application dated August 1, 2013. Part of Permit Modified:

Part III of the Application - Site Development Plan

Attachment 8 – Cost Estimate for Closure and Postclosure Care (cover page revised) Pages 1, 2, 4, and 6 (revised)

Table 1 – Closure Cost (revised)

Table 2 – Postclosure Care Cost (revised)

Attachment 11 – Groundwater Sampling and Analysis Plan (cover page revised)

Section XVII - Landfill Gas Control (Page 13 revised)

Drawing 7 - System Layout (added)

Appendix H - Landfill Gas System Expansion (Page H-1 revised)

This modification is a part of Permit No. 1522A and should be attached thereto.

Approved, Issued, and Effective in accordance with Title 30 Texas Administrative Code Chapter 305, Section 305.70(j)(17) and (30) and Chapter 330.

Issue Date:

SEP 30 2013

For the Commission

CITY OF VICTORIA LANDFILL VICTORIA COUNTY, TEXAS MSW PERMIT NO. 1522A

SITE DEVELOPMENT PLAN PART III ATTACHMENT 11 GROUNDWATER SAMPLING AND ANALYSIS PLAN

Prepared for

City of Victoria

May 2009

Revised August 2013

Prepared by

Weaver Boos Consultants, LLC–Southwest TBPE Registration No. F-3727 6420 Southwest Boulevard, Suite 206 Fort Worth, Texas 76109 817-735-9770

WBC Project No. 0120-74-11-42

Attachment 6-14

CITY OF VICTORIA LANDFILL VICTORIA COUNTY, TEXAS **TCEQ MSW PERMIT NO. 1522-A**

GROUNDWATER SAMPLING AND ANALYSIS PLAN (GWSAP)

Prepared for:

BFI Waste Systems of North America, Inc.

August 2001

Revised December 2006 Prepared by: The Carel Corporation 136 Pecan Street Keller, TX 76248 (817)337-0112

Revised May 2009 for **Republic Waste Services of Texas, Ltd.** by: Hydrex Environmental, Inc. 1120 NW Stallings Drive Nacogdoches, Texas 75964-3428

> Revised August 2013 for **City of Victoria**

by:

Weaver Boos Consultants, LLC-Southwest **TBPE Registration No. F-3727** 6420 Southwest Blvd., Suite 206 Fort Worth, Texas 76109 817-735-9770

WBC Project No. 0120-74-11-42

Attachment 6-15

TABL	ES	iii
1	INTRODUCTION	1
2	FIELD PROCEDURES2.1Personnel2.2Sampling Event Preparation and QA/QC2.1.1General Event Preparation2.2.2Sample Container Selection2.3.3Sample Container Preparation and Decontamination Procedures2.4Equipment Preparation and Decontamination Procedures2.5Field QA/QC Samples2.3Well Purge2.3.1General Well Purge Information2.3.2Water Level Measurement2.3.3Well Purging2.3.4Purge Water Management2.4Monitoring Well Sample Collection2.4.1General Sample Collection2.4.2Sample Collection Order2.4.3Sampling Equipment/Procedures2.4.4VOC Sample Collection2.4.5Sample Filtration2.4.6Sample Preservation and Holding Times2.4.7Field Measurements2.5Record Keeping2.5.1Field Data Sheets2.5.2Chain-of-Custody/Sample Container Labels2.6Sample Storage and Transport	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
3	LABORATORY PROCEDURES/PERFORMANCE STANDARDS	12
4	 SAMPLING FREQUENCY 4.1 Background 4.1.1 Updating Background Data 4.2 Detection Monitoring Events 4.3 Ground Water Analysis Result Submittals 	15 15 15 15 15
5	 STATISTICAL METHODOLOGY GROUNDWATER DATA ANALYSIS 5.1 Updating Background Data 5.2 Statistically Significant Constituents, Verification Resampling, and Assessment Monitoring 	17 17 17
6	ANALYTICAL METHODS AND REPORTING LIMITS	19
7	REFERENCES	20
APPE APPE APPE APPE APPE	 CNDIX A – Sample Field Data Sheet CNDIX B – Containerization and Preservation of Samples CNDIX C – Recommended Cleaning and Decontamination Procedures CNDIX D – Laboratory Checklist CNDIX E – Statistical Analysis Plan 	Page 2 0/10/06

Tables

1 Background/Detection Monitoring Parameters

21

1 INTRODUCTION

This Groundwater Sampling and Analysis Plan (GWSAP) has been prepared for the City of Victoria Landfill, MSW Permit No. 1522-A.

The following plan describes the consistent collection, processing and analysis of groundwater samples and the basic laboratory requirements for obtaining valid, defensible data. The purpose of the GWSAP, in accordance with the requirements set forth in 30 TAC §330.405, is to establish the standards and practices for compliance with the landfill's permit specifications and to ensure that samples obtained are representative of the groundwater present in the geologic formation sampled by the monitoring wells.

In addition, this GWSAP generally describes the purpose and procedures for quality assurance, quality control, statistical analysis and reporting of the results of groundwater monitoring samples collected for the purpose of groundwater monitoring at the waste management unit.

A complete description of the groundwater monitoring system is included in Attachment 5 of the facility's Site Development Plan.

2 FIELD PROCEDURES

2.1 Personnel

Field personnel responsible for sampling will possess, at a minimum, a degree of competence typical of that for trained field personnel who are actively involved in monitor well sampling. Personnel will be thoroughly familiar with all required field equipment, its operation, maintenance, and calibration. Personnel shall also possess a knowledge of all methodologies, procedures, and measurements which relate to field sampling.

2.2 Sample Event Preparation and QA/QC

2.2.1 General Event Preparation

Preparation for a groundwater monitoring event should include acquisition of all necessary coolers, pre-cleaned containers, trip blankets, chemical preservatives, labels, custody seals, chain-of-custody, properly operating and calibrated measuring devices, and necessary sampling equipment. All field data shall be entered on a Field Data Sheet, similar to the example contained in Appendix A, or an equivalent form.

2.2.2 Sample Container Selection

Sample containers need to be constructed of a material compatible and non-reactive with the material it is to contain. The number and types of containers and their respective physical and chemical preservatives will be consistent with the requirements of the approved analytical method as described in Section 6 of this GWSAP.

2.2.3 Sample Container Preparation

Sample containers will be purchased as a pre-cleaned product or cleaned in the laboratory in a manner consistent with EPA protocol.

2.2.4 Equipment Preparation and Decontamination Procedures

This section outlines the equipment preparation and the decontamination procedures to be used during the event. This equipment preparation includes minimum decontamination procedures for water level indicator(s), filter device (when applicable), and field parameter measurement device(s). Operation and calibration of field instruments will be performed per the manufacturer's instructions.

- Water Level Indicator(s) Water level indicator(s) will be decontaminated by hand washing the sensor probe in a laboratory grade non-phosphate detergent followed by rinsing with deionized water. Prior to the event and after use at each well, the instrument will be decontaminated according to the procedures outlined in Appendix C.
- Field Parameter Measuring Device(s) Field parameter measuring device(s) will be decontaminated according to the procedures outlined in Appendix C. Meters will be checked for proper calibration and operation as per the manufacturer's instructions. Any malfunctioning meters will be replaced or repaired.
- Filtration Device Filtering of groundwater samples, if required, will be done with in-line disposable filtration cartridges requiring no decontamination or a portable filtration device. A sufficient number of disposable filtration cartridges will be taken to the site. Disposable cartridges will not be reused between wells. If a portable filtration device is used, the filter chamber will be disassembled and decontaminated according to the procedures outlined in Appendix C, prior to initial use and between wells where used. Field filtering will not be conducted for samples to be analyzed for total metals or VOCs.
- Portable Purge and Sample Equipment (portable pumps, disposable tubing, portable/disposable bailers) Should portable purge and sample equipment be used, the equipment will be decontaminated, according to the procedures outlined in Appendix C, prior to initial site arrival and between wells where used. Portable pumps and bailers will also be decontaminated according to the procedures outlined in Appendix C. Disposable tubing and/or bailers will be discarded between each monitoring well, and new tubing or disposable bailer used, therefore no decontamination is necessary.

In the case of equipment failure, it is recommended that back-up instruments be in the sample crew's possession. If a back-up instrument is not available, or fails in addition to the primary equipment, sampling will not proceed until the proper equipment is made available.

2.2.5 Field QA/QC Samples

Field QA/QC samples consist of two (2) primary areas of quality control. The first area is the quality control of sample contamination which may occur in the field and/or shipping procedures. This is monitored in the trip blank(s) and field blank(s). A basic description of each is as follows:

- Trip Blank These samples will be prepared by filling the appropriate clean sample containers with laboratory grade deionized water and adding the applicable chemical preservative, if any. These containers are to be labeled, the analyses to be performed on each container indicated, and then shipped in the typical transportation cooler to the field and back to the laboratory along with the other sample set containers for a given event. This blank is tested to detect any contamination that may occur as a result of the containers, sample coolers, cleaning procedures, or chemical preservatives used. Trip blanks will consist of analysis of volatile organics and shall be taken and analyzed at a minimum of one (1) per sampling event.
 - Field Blank Field blank containers will be prepared in the field at a routine sample collection point during a monitoring event by filling the appropriate sample containers from the field supply of laboratory grade deionized water. This blank is tested for any contamination that may occur as a result of site ambient air conditions and serves as an additional check for any contamination in the containers, sample transport coolers, cleaning procedures, and any chemical preservatives. Field blanks will consist of analysis of volatile organics and shall be taken and analyzed at a frequency of one(1) per sampling event.
- Equipment (Rinsate) Blank In the event that a dedicated pump is inoperative and non-dedicated pump is used to purge and/or sample a well, an equipment blank will be collected. Field supply laboratory grade deionized water will be passed through the non-dedicated equipment in the same manner as a groundwater sample. This blank confirms proper field decontamination procedures on non-dedicated equipment utilized in the field. Equipment blanks will consist of analysis of volatile organics and shall be collected at a minimum of one per event at which a dedicated pump is found to be

inoperable and non-dedicated pump is utilized for purging and/or sampling.

Other Field QA/QC Samples – A second area of standard field QA/QC samples are field duplicates, matrix spike and matrix spike duplicates.

Field Duplicates are an extra set of samples taken at a particular monitoring point, generally from a designated downgradient well, and labeled so that the laboratory is unaware at what point the duplicate was collected. These are independent samples which are collected as close as possible to the same point in space and time. They are two (2) separate samples taken from the same source, stored in separate containers, and analyzed independently.

Field duplicates are useful in documenting the precision of the sampling and analytical process. Samples shall be collected in proper alternating order for the sample point and field duplicate for each parameter (e.g. collect first VOC sample, then duplicate VOC sample; then collect first metals sample, then duplicate metals sample; and so on). Field duplicates shall be taken and analyzed at a sample point (monitor well) batch minimum of one (1) per sample event.

Appropriate field QA/QC documentation should be recorded on the Field Data Sheet or equivalent form (e.g. location where field blank was collected).

2.3 Well Purge

2.3.1 General Well Purge Information

Purging a monitoring well is just as important as the subsequent sampling of the well. Water standing in a monitoring well over a certain period of time may become unrepresentative of formation water because of chemical and biochemical changes which may cause water quality alterations.

Prior to monitoring well purge, inspection of the monitoring well integrity will be performed at each sampling event by utilizing the Field Data Sheet (see Appendix A) or an equivalent form. Visual problems with the monitor well integrity and potential sources of possible contamination should be noted on the Field Data Sheet. When necessary, appropriate repairs will be made to damaged wells. Any monitoring well that is damaged to the extent that it is no longer suitable for sampling shall be reported to the executive director who may make a determination about whether to repair or replace the well.

2.3.2 Water Level Measurement

Prior to any purge or sampling activity at each monitoring well, a water level measurement is required to be taken and recorded on the Field Data Sheet or an equivalent form. Measurement of the static water level is important in determining the hydrogeologic characteristics of the subsurface (e.g. upgradient and downgradient). Total depth measurements will be taken as deemed necessary to evaluate monitor well integrity or determine the need for redevelopment.

Water level indicator equipment will be constructed of chemically inert materials and, during mobilization preparation and following each monitoring point, will be decontaminated at each well in accordance with Appendix C. Decontamination water and rinse water will be handled in the same manner as purge water. Water levels will be measured with a precision of ± 0.01 foot. Water-level measurements will be taken from a permanent, easily identified reference point, or datum, at the well. Typically this datum will be the top of the casing (TOC) or the top of the protective pipe. The elevation of the datum will be established by a licensed surveyor. This reference point elevation is measured in relation to Mean Sea Level (MSL).

Ground water elevations in wells must be measured within a forty-eight (48) hour period to avoid temporal variations in groundwater flow which could preclude accurate determination of groundwater flow rate and direction.

2.3.3 Well Purging

Prior to sampling, each well will be purged by bailing or pumping. Purging of the well will remove stagnant water and ensure that representative and meaningful samples are obtained.

Well purging will take place from hydraulically upgradient wells to hydraulically downgradient wells. If known impacts exist, purging will take place from the least impacted well to the most impacted well.

Prior to purge, the sample crew will put on clean disposable nitrile gloves and an initial water level will be taken as described in Section 2.3.2.

Care will be exercised during purging to avoid introducing contaminants into the water in the well. Disposable, powder-free, nitrile or latex gloves will be used to minimize the chances of cross-contamination. Gloves will be changed after each well. Either disposable bailers, or well-dedicated bailers/pumps will be used to maximize the likelihood of obtaining a clean sample and minimize the potential for cross-contamination. If disposable bailers are utilized, each bailer will be used for only one well. The bailer will be discarded after use.

If conditions do not allow either dedicated or disposable equipment, the purging device(s) will be decontaminated between wells. Decontamination of the reusable purging equipment will be performed to ensure that there is no cross contamination between wells. The collection, storage and disposal of decontamination fluids will be handled in the same manner as purge water. Decontamination procedures will be performed as outlined in Appendix C.

Bailers used for purging shall be constructed of TeflonTM, polypropylene, flexible PVC, or stainless steel or other inert material. The bailer will be lowered gently to a point near the bottom of the screen, and then brought slowly to the surface.

Prior to sampling with a bailer, the well will be purged until at least three well volumes of water have been removed and/or until the field parameters have stabilized. Calculation of well volumes for each well will be based on the total height of water, as measured prior to purging, and the following rates for 2" and 4" wells, respectively: 2" - 0.163 gal/ft, 4" - 0.6528 gal/ft. For wells that recharge slowly, the well may be purged dry before the three well volumes are removed. For these wells, purging to dryness is sufficient. Where possible, the water level will be allowed to recover to within approximately 90% of the pre-purge water level so that a complete collection of samples can be obtained. For those wells that are slow to recharge, it is acceptable to collect an incomplete set of samples if sufficient water is available for sampling. A recharge period of up to 72 hours is allowable for slow-recharging wells.

If pumps are used, the pump will be designed to prevent air from contacting the sample. In keeping with EPA guidance, purging rates should minimize the possibility of stripping VOCs or re-development of the well. Pumps used to sample groundwater at the waste management unit may include pumps and equipment used to employ low-flow purging and sampling techniques. Low-flow purging and sampling is a technique that allows for the collection of representative groundwater samples directly from the screened interval of a well. Using the low-flow technique, the well is purged and samples are collected at a rate approximately equal to or less than the rate of well recharge. This minimizes drawdown of the water level within the well. Maintaining minimal drawdown allows for purging of water directly from the screened interval of a well and limits the influence of stagnant, non-representative casing water. Eliminating casing water influence reduces the purge volume necessary to ensure collection of representative samples. A site-specific demonstration of the applicability of low-flow techniques will be made prior to using low-flow techniques for groundwater monitoring purposes.

If non-low-flow techniques are used, purging rates should minimize the possibility of stripping VOCs or re-development of the well. Wells may be purged to dryness if unavoidable at low purge rates. Purging will be considered complete once three well volumes have been removed (if the well is not purged to dryness).

Data collected prior to and during sampling will be recorded on field data sheets (similar to that included in Appendix A) and will include the volume of water purged from the well, depth to water, water-level elevation, depth to the bottom of the well, height of the water column, well volume, well purging, time, a record of pH, conductivity, temperature, and turbidity observations, and any other pertinent information.

2.3.4 Purge Water Management

The water removed from a well during purging may be discarded on site unless contamination is known to be present. On site disposal includes placement of the purge water into the facility's leachate storage tanks. Purge water suspected to be contaminated based on previous analytical results may be placed into the facility's leachate storage tanks or containerized until evaluation of analytical results. Appropriate disposal arrangements, which may include placement into the facility's leachate storage tanks, will be made for purge water determined to be contaminated.

All purge water (and excess sample water) will initially be collected in appropriate containers or directly into a leachate collection system, contaminated water container, or gas condensate storage tank and not discharged to the ground surface. Purge water (and excess sample water) will be disposed by methods consistent with Permit specific waste management, and leachate (and/or gas condensate) storage and management options and procedures. Purge water may be managed by the following methods:

- Utilizing leachate storage tanks, leachate risers, or landfill gas condensate storage tanks;
- Disposal at the active working face;
- Disposal at the liquid waste bulking facility; and
- Disposal via a direct discharge to a sanitary sewer system.

If the purge water is below background concentrations for monitored constituents, it may be discarded to the ground surface away from the monitor well area.

2.4 Monitoring Well Sample Collection

2.4.1 General Sample Collection

The time interval between the completion of well purge and sample collection normally should not exceed twenty-four hours. Longer times not exceeding six (6) or seven (7) days may be allowed for slow recharging wells.

2.4.2 Sample Collection Order

To avoid cross-contamination of samples between wells, sampling will begin at the well that is known to be least contaminated and end with the most contaminated well. If contamination is not known to be present, then the sampling will proceed from the well with the highest water level elevation to wells with successively lower water level elevations. Sample containers will be filled in the following order (based upon volatilization sensitivity):

VOCs (volatile organic compounds) SVOCs (semi-volatile organic compounds) Metals

This sequence may be modified to allow for wells which are slow to recharge and which require a longer recovery period.

Revised August 2013, Weaver Boos Consultants, LLC-Southwest

Revised March 2008, Hydrex Revised July 2008, May 2009, Hydrex

2.4.3 Sampling Equipment/Procedures

Efforts shall be made to minimize turbulence and aeration during sampling. If a bailer is used, it shall be equipped with a bottom-emptying device which will reduce turbulence. The bailer will also be capable of significantly minimizing sample agitation and be able to discharge the sample at a low rate. If a pump not employing low-flow techniques is used for sampling, the sample discharge rate will not exceed 1.0 L/min and the rate should be reduced to 0.1-0.25 L/min during collection of VOC samples. For pumps employing low-flow techniques, sample discharge rates should comply with the required demonstration as described in Section 2.3.3 of this GWSAP. Additionally, the intake device for both bailers and pumps will be located within the screened portion of the well. If the well screen is not completely submerged, the pump intake will be located approximately halfway between the water table and the bottom of the screen interval.

Transfer containers will not be used for sample collection. For low-flow purge systems, inline, flow-through collection devices may be used to eliminate the need for transfer containers. If non-dedicated sampling devices are used, they will be cleaned and decontaminated using those procedures outlined in Appendix C. All non-dedicated equipment will be subjected to a final rinse with distilled or deionized water. Soiled sample bottles, bailer rope, rubber hose, gloves, or filtration media shall not be used.

For sampling that does not employ low-flow techniques, if a sufficient volume of water is available in the well, the first portion of water (approximately one gallon), shall be discarded to help eliminate any oxidized water that may be present at the top of the water column. For low-flow sampling techniques, sampling may commence immediately following completion of well purging. Discarded water will be managed in the same manner as purge water.

2.4.4 VOC Sample Collection

Filling VOC sample containers involves extra care. The water should be gently discharged into each vial until a positive meniscus is formed over the top of the container to insure no headspace is present in the sample vial upon replacing the cap.

2.4.5 Sample Filtration

Filtering will not be conducted for samples collected for detection or assessment monitoring.

2.4.6 Sample Preservation and Holding Times

Holding times, sample preservation, and sample volumes required for each analysis will be reviewed with the laboratory prior to sampling. Acceptable sample holding times and preservation methods will be consistent with the requirements of the approved analytical methods as described in Section 6 of this GWSAP. Examples of holding times and preservation methods that may be applicable are found in Appendix B.

2.4.7 Field Measurements

Required field measurements include water levels, temperature, pH, specific conductivity, and turbidity observations. Water level measurement procedures are described in Section 2.3.2. Field parameters will be measured using either hand held instruments placed directly into discharged water or an in-line flow cell. Each of these measurements is important in the documentation of properly collected groundwater samples. All instruments shall be properly calibrated and checked with standards according to the manufacturer's instructions. Back-up instruments are recommended to be available with the sample crew.

2.5 Record Keeping

2.5.1 Field Data Sheets

All field information will be entered on a standard Field Data Sheet (an example of which is provided as Appendix A) or equivalent form. All entries should be legible and made in indelible ink. Entry errors will be crossed out with a single line, dated, and initialed by the person making the corrections.

2.5.2 Chain-of-Custody/Sample Container Labels

Proper chain of custody (COC) records are required to insure the integrity of the samples and the conditions of the samples upon receipt at the laboratory, including temperatures of the samples at the time of log-in. The required COC document will be initiated by the sampler. The COC will accompany the samples during transport and will be protected from moisture in a re-sealable plastic bag. It will be completed by each party handling the samples, to provide evidence of possession of the samples at all times. Individuals relinquishing and receiving the samples will sign, date, and record the time of transfer on the COC form.

Prior to sampling, labels will be filled out and placed on the sample bottles. The labels should contain pertinent information, which may include the following: date, type of analysis

required, site permit name or number, well number, sampler's name, and a unique lab identification number. All information will be printed on the labels with a water-proof, indelible pen. The label may also be covered with transparent tape for protection and to prevent easy removal. For some bottles, information may be written on the bottles and separate labels may not be necessary.

2.6 Sample Storage and Transport

Properly labeled and filled, sample containers shall be placed in re-sealable bags, then into an ice chest or other insulated container packed with sufficient ice to keep them cold (approximately 4°C or 39.2° F). Adequate ice will be kept in the ice chest to maintain the temperature until the samples are transported to the laboratory. Dry ice will not be used to chill the samples because of the danger of freezing the samples and bursting the containers. Adequate holding times and volume of samples required for each analysis will be considered with the laboratory prior to sampling.

If the samples are shipped, sturdy insulated containers will be used. The insulated container shall be cushioned inside to prevent breakage of the sample containers. Finally, the insulated container will be thoroughly sealed with cloth tape or reinforced shipping tape and will include adhesive custody seals.

3 LABORATORY PROCEDURES / PERFORMANCE STANDARDS

Laboratory data and analyses will be performed and submitted in accordance with Chapter 330 Subchapter F, Analytical Quality Assurance and Quality Control, until its expiration on January 1, 2009, at which time the facility will submit laboratory data and analyses prepared by a TCEQ-accredited environmental testing laboratory and in accordance with acceptable accreditation standards (e.g. NELAC).

In complying with Subchapter F, the owner or operator shall review all analytical data submitted under the requirements of this permit to ensure compliance with data quality objectives, prior to submittal of the data to the commission for review. This data review must include examination of the quality control results and other supporting data, including any data review by the laboratory and must identify any potential impacts such as bias on the quality of the data using qualifiers in the test reports tied to explanations in the footnotes and in any laboratory case narrative which is required.

It is the responsibility of the owner or operator to ensure that the laboratory documents and reports all problems and anomalies observed that are associated with the analysis. If the analysis of the data indicates that it failed to meet the quality control goals for the laboratory's analytical data analysis program, it does not necessarily mean that the data is unusable. The owner and/or operator may still report the analytical data but must report any and all problems and corrective action that the laboratory identified during the analysis.

A Laboratory Case Narrative (LCN) report for all problems and anomalies observed must be submitted by the owner and/or operator. The LCN will report the following information:

- 1. State the exact number of samples, testing parameters and sample matrix.
- 2. The name of the laboratory involved in the analysis. If more than one laboratory is used, all laboratories shall be identified in the case narrative.
- 3. State the test objective regarding samples.
- 4. Explain each failed precision and accuracy measurement determined to be outside of the laboratory and/or method control limits.
- 5. Explain if the effect of the failed precision and accuracy measurements on the results induces a positive or negative bias.
- 6. Identify and explain problems associated with the sample results, along with the limitations these problems have on data usability.

- 7. A statement on the estimated uncertainty of analytical results of the samples when appropriate and/or when requested.
- 8. A statement of compliance and/or noncompliance with the requirements and specifications. Exceedance of holding times and identification of matrix interferences must be identified. Dilutions shall be identified and if dilutions are necessary, they must be done to the smallest dilution possible to effectively minimize matrix interferences and bring the sample into control for analysis.
- 9. Identify any and all applicable quality assurance and quality control samples that will require special attention by the reviewer.
- 10. A statement on the quality control of the analytical method of the permit and the analytical recoveries information shall be provided when appropriate and/or when requested.

In addition to the LCN, the following information must be submitted for all analytical data:

- 1. A Table identifying the field sample name with the sample identification in the laboratory report.
- 2. Chain of custody must be provided.
- 3. Analytical Report that documents the results and methods for each sample and analyte to be included for every analytical testing event. These test reports must document the reporting limit/method detection limit the laboratory used.
- 4. A release statement must be submitted from the laboratory. This statement must state "I am responsible for the release of this laboratory data package. This data package has been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data."
- 5. If it is an in house laboratory, it must have the following statement: This laboratory is an in-house laboratory controlled by the person responding to rule. The official signing the cover page of the rule-required report in which

Attachment 6-30

these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true.

6. A completed laboratory checklist, similar to the one provided in Appendix D, will be provided with every analytical testing event report. The permittee may amend the checklist as long as it includes the information found in the attachment. For every response of "No, NA, or NR" that is reported on the checklist, the permittee will ensure the laboratory provides a detailed description of the "exception report" in the LCN. The permittee will require the laboratory to use the checklist and do an equivalent of an EPA level 3 review regarding quality control analysis.

14

4.1 Background

The City of Victoria Landfill will monitor for the constituents listed in Table 1.

Regulations listed in 30 TAC 330.407, require four (4) statistically independent samples from each background and each downgradient well be collected and analyzed for constituents referenced in 30 TAC 330.419 r alternative list. Due to the seasonal and temporal variations natural in groundwater analytical data and the distinctive change in Municipal Solid Waste Landfill (MSWL) groundwater monitoring requirements in Texas, at least four background samples for VOCs and eight background samples for remaining parameters will be collected from each well. In order to ensure that background monitoring produces statistically independent samples, sampling shall be conducted on a quarterly basis. This schedule will allow for hydraulic and chemical stabilization of the groundwater between sampling events and will provide information on possible seasonal fluctuations in water chemistry. Background samples will be taken from each existing well that is part of the groundwater monitoring system, as well as from any new or replaced monitor well that belongs to the system.

4.1.1 Updating Background Data

Updating of background data will be performed as per Section 5.1

4.2 Detection Monitoring Events

After establishment of background values, detection monitoring of upgradient and point of compliance wells will be conducted on a semi-annual basis for constituents listed in Table 1.

4.3 Ground Water Analysis Result Submittals

The results of the analyses of groundwater samples collected during background/detection monitoring will be submitted to the TCEQ annually and not later than 90 days after the facility's last groundwater monitoring event in a calendar year. The annual monitoring report will include the following items as related to the calendar year represented by the annual report:

15

- a statement describing the occurrence and status of any SSIs reported,
- the results of all groundwater monitoring, testing, and analytical work performed as a part of the requirements of the facility's permit,
- a summary of background groundwater quality values,
- a summary of groundwater monitoring analyses,
- pertinent statistical calculations, graphs, drawings,
- a contour map and associated data demonstrating the piezometric water levels of the uppermost aquifer, and
- other items as requested by the Executive Director.

The annual groundwater monitoring report will include a determination of the groundwater flow rate and direction of the uppermost aquifer as determined for the calendar year addressed in the annual report. The data used to determine the groundwater flow rate and direction will also be included in the annual groundwater monitoring report. Additionally, the annual groundwater monitoring report will include recommendations for any changes related to groundwater monitoring activities.

The results will be submitted in triplicate (the original and two copies) on TCEQ-0312 form with all the appropriate heading information completed and in any other format prescribed by the MSW Permits Section (e.g. electronically).

TCEQ-0312 form should be accompanied by the laboratory report itself, appropriate QA/QC data, and copies of the chain-of-custody forms. The first page of TCEQ-0312 form will be completely filled out. It will be signed and dated by the site operator. Pages two, three, and four of the form will be completed and submitted. These pages will include a list of all analytical methods used and provide PQLs or SDLs for each of the analyzed constituents.

Laboratory Case Narrative and Laboratory Checklist (Section 3) may be provided in lieu of laboratory analytical sheets and QA/QC documentation. If requested by the TCEQ laboratory analytical reports and QA/QC will be provided in either electronic or in hard copy form.

Not later than 74 days after each sampling event, the owner or operator will notify the Executive Director and any local pollution agency with jurisdiction that has requested to be notified in writing if there has been an SSI from background of any tested constituent at any monitoring well. All submittals, including cover letters will be submitted in triplicate.

5 STATISTICAL METHODOLOGY – GROUNDWATER DATA ANALYSIS

Statistical analyses of groundwater data will be performed in accordance with applicable regulations. A statistical analysis plan has been included in Appendix E.

5.1 Updating Background Data

In accordance with applicable regulations, background data sets may be updated once every two years with results from semi-annual detection monitoring that have been determined to be representative of background groundwater quality. A report demonstrating that the results to be incorporated into background are representative of groundwater quality will be submitted to the executive director. This report will be submitted prior to the monitoring event for which the updated data are to be used for statistical analysis.

5.2 Statistically Significant Constituents, Verification Resampling, and Assessment Monitoring

During detection monitoring, a statistically significant increase (SSI) from background of any tested constituent may result in the implementation of assessment monitoring. If an apparent SSI occurs for a constituent referenced in 30 TAC §330.419(a), or any other constituent that has a primary maximum contaminant level (MCL), an assessment monitoring program will be initiated within 164 days of the original sampling event or on the next regularly scheduled semiannual detection monitoring event, unless it can be demonstrated to the satisfaction of the Executive Director that the SSI is the result of error, seasonal variations, or cause other than the MSWLF or if the SSI is disproved by verification and/or statistical resampling. In accordance with applicable regulatory guidelines, the following time line can be used for the implementation of the assessment monitoring process:

Activity/Report Description	Submittal Day in Time Line
Detection Sample Completion Date	Start of Time Line \sim Day - 0
Determination of SSI	On/Before Day - 60
SSI Notice to Executive Director (ED)/Local Pollution Control Agency	On/Before Day - 74
Notice of Intent to Submit Demonstration to ED/Local Pollution Control Ag	ency On/Before Day - 74
Submit Results of Resampling	On/Before Day - 120
Submit Alternate Source/Error Demonstration	On/Before Day - 150
Initiation of Assessment Monitoring At Next Scheduled	Event or On/Before Day - 164

Assessment and/or corrective action monitoring activities will be performed as authorized by the Executive Director. Assessment monitoring samples will be collected from the well demonstrating the SSI(s) and the immediately surrounding point of compliance wells unless otherwise allowed by the Executive Director.

Rev. 2, 11/30/06 Revised March 2008, Hydrex Revised May 2009, Hydrex The groundwater monitoring program will include analytical methods that are appropriate and that accurately measure hazardous constituents and other monitoring parameters in groundwater samples. Acceptable methods of analyses include those in *Standard Methods for the Examination of Water and Wastewater*, 18th edition, 1992, as revised; EPA document SW 846, *Test Methods for Evaluating Solid Waste*, third edition, November 1986, as revised; *Methods for Chemical Analysis of Water and Wastes*, EPA-600/4-79-020, as revised; and as listed in future updates.

The PQL is defined as the lowest concentration reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions and is analogous to the limit of quantitation (LOQ) definition in the most recent available NELAC Standard (National Environmental Laboratory Accreditation Conference). The PQL is method, instrument, and analyte specific and may be updated as more data become available. The PQL must be below the groundwater protection standard established for that analyte as defined by 30 TAC §330.409(h) unless approved otherwise by the Texas Commission on Environmental Quality (TCEQ). The precision and accuracy of the PQL shall be initially determined from the PQLs reported over the course of a minimum of eight groundwater monitoring events. The results obtained from these events shall be used to demonstrate that the PQLs meet the specific precision and accuracy as shown in the table below. The PQL will be supported by analysis of a PQL check sample, which is a laboratory reagent grade sample matrix spiked with chemicals of concern at concentrations equal to or less than the PQL. At a minimum, a PQL check sample will be performed quarterly during the calendar year to demonstrate that the PQL continues to meet the specified limits for precision and accuracy as defined in the table below.

COC	Precision (%RSD)	Accuracy (%Recovery)
Metals	10	70-130
Volatiles	20	50-150
Semi-Volatiles	30	50-150

Table	1 -	QC -	Specification	Limits for	the PQL a	1d Lower	Limit	of Ç	Quantitation	Check San	nples
-------	-----	------	---------------	------------	-----------	----------	-------	------	--------------	-----------	-------

For analytes that the established PQL cannot meet the precision and accuracy requirements in the table above, the owner/operator will ensure the laboratory will submit sufficient documentation and information to the TCEQ for alternate precision and accuracy limits on a case by case basis. Non-detected results will be reported as less than the established PQL limit that meets these precision and accuracy requirements.

Attachment 6-36

American Society of Testing and Materials (ASTM), 1986. Standard Guide for Sampling Groundwater Monitoring Wells. D 448-850.

US. Environmental Protection Agency, 1986. RCRA Groundwater Monitoring Technical Enforcement Guidance Document. OSWER - 99550.1, Office of Waste Programs Enforcement, Office of Solid Waste and Emergency Response, Washington, D.C.

U.S. Environmental Protection Agency, 1992. RCRA Groundwater Monitoring: Draft Technical Guidance. EPA/530-R-93-001, NTIC #PB93-139-350, Office of Solid Waste and Emergency Response, Washington D.C.

U.S. Environmental Protection Agency, 1991b. Handbook - Groundwater, Volume II: Methodology. EPA/625/6-90/0166.

U.S. Environmental Protection Agency, November 1986. Test Methods for Evaluating Solid Waste - PhysicalIChemical Methods, Third Edition (revised), SW-846. Office of Solid Waste and Emergency Response, Washington, D.C.

U.S. Environmental Protection Agency, November 1993. Solid Waste Disposal Facility Criteria Technical Manual. EPA/530-R-93-017, NT1C #PB94-100-450, Office of Solid Waste and Emergency Response, Washington, D.C.

Texas Natural Resources Conservation Commission (TNRCC), "Texas Administrative Code, Title 30, Chapter 330, Municipal Solid Waste", October 9, 1993 (Effective date).

Texas Natural Resources Conservation Commission (TNRCC), Environmental Trade Fair Conference, 1998, Volume 1, pp. 199-201.

20

TABLES

March 2008, Hydrex

Attachment 6-38

TABLE 1 BACKGROUND/DETECTION MONITORING PARAMETERS

Detection Monitoring Constituents

Total Heavy Metals:	cadmium	lead	thallium
antimony	chromium	nickel	vanadium
arsenic	cobalt	selenium	zine
barium	copper	silver	2.110
beryllium		511701	
Organic Constituents:		CAS (Chemical Abstracts Service) No	ı.
acetone		67-64-1	•
acrylonitrile		107-13-1	
benzene		71-43-2	
bromochloromethane		74-97-5	
bromodichloromethane		75-27-4	
bromoform (tribromomethane)		75-25-2	
earbon disulfide		75-15-0	
carbon tetrachloride		56-23-5	
chlorobenzene		108-90-7	
chloroethane (ethyl chloride)		75-00-3	
chloroform (trichloromethane)		67-66-3	
dibromochloromethane (chlorodibromo	niethane)	124-48-1	
1,2-dibromo-3-chloropropane (DBCP)		96-12-8	
1,2-dibromoethane (ethylene dibromide	, EDB)	106-93-4	
o-dichlorobenzene (1,2-dichlorobenzen	e)	95-50-1	
p-dichlorobenzene (1,4-dichlorobenzen	e)	106-46-7	
trans-1,4-dichloro-2-butene	,	110-57-6	
1,1-dichloroethane (ethylidene chloride)	75-34-3	
1,2-dichloroethane (ethylene dichloride)	107-06-2	
1,1-dichloroethylene (1,1-dichloroether	ie)	75-35-4	
eis-1,2-dichloroethylene (eis-1,2-dichlo	roethene)	156-59-2	
trans-1,2-dicholoroethylene (trans-1,2-d	lichloroethene)	156-60-5	
1,2-dichloropropane (propylene dichlor	ide)	78-87-5	
cis-1,3-dichloropropene	,	10061-01-5	
trans-1,3-dichloropropene		10061-02-6	
ethylbenzene		100-41-4	
2-hexanone (methyl butyl ketone)		591-78-6	
methyl bromide (bromomethane)		74-83-9	
methyl chloride (chloromethane)		74-87-3	
methylene bromide (dibromethane)		74-95-3	
methylene chloride (dichloromethane)		75.09-2	
methyl ethyl ketone (MEK, 2-butanone)	78-93-3	
methyl iodide (iodomethane)		74-88-4	
4-methyl-2-pentanone (methyl isobutyl	ketone)	108-10-1	
styrene		100-42-5	
1,1,1,2-tetrachloroethane		630-20-6	
1,1,2,2-tetrachloroethane		79-34-5	
tetrachloroethylene (tetrachloroethene)		127-18-4	
toluene		108-88-3	
1,1,1-trichloroethane (methylchloroform	n)	71-55-6	
1,1,2-trichloroethane	-	79-00-5	
trichloroethylene (trichloroethene)		79-01-6	
trichlorofluoromethane (CFC-11)		75-69-4	
1,2,3-trichloropropane		96-18-4	
vinyl acetate		108-05-4	
vinyl chloride		75-01-4	
xylenes (total)		1330-20-7	

March 2008, Hydrex July 2008, Hydrex

APPENDIX A

SAMPLE FIELD DATA SHEET

-

Attachment 6-40

FIELD DA	TA SHEET
Well ID: Project No.:	Date:
Site: Technician:	
Water Level Prior to Purging (measurements in feet):	Well Diameter (inches):
a. Total Depth of Well (from TOC)	_ Top of Casing Elevation
b. Depth to water (from TOC)	Water Level Elevation
c. Height of water column (a-b)	X gaV/t. X 3 well volumes = gals.
Well Volume of 4" well = 0.6528 gallons/ft.	Well Volume of 2" well = 0.163 gallons/ft.
Well Volume of 1"	well = 0.07 gallons/ft.
Time of Purge: Amount Purged:	gal. Purged to dryness: yes / no
Purge Water Characteristics	
Color Odors pH Con	ductivity Temperature Remarks
Vol 1	
Vol 2	
Vol 3	
Vol 4	
Sampling Date :	# Size Filtered Preservatives Lot/Prod #
Water Level Prior to Sampling (From TOC) :	VOA ves/no
Time of Sampling:	250 m) ves/no
Field Blank: yes / no Trip Blank: yes / no	500 ml ves / no
Disposal Bailer: yes / no No. Containers;	
	21 plastic ves / no
Sample Spec. Temp	
Color Odor pH Cond. (°C)	
	yes/no
	yes / no
Additional Mater Granitality Lucas description	yes / no
Additional Notes (IMMISCIDIe layers, foaming, etc.):	1

APPENDIX B

EXAMPLES OF CONTAINERIZATION AND PRESERVATION OF SAMPLES

March 2008, Hydrex

Attachment 6-42

.

EXAMPLES OF CONTAINERIZATION AND PRESERVATION OF SAMPLES

Moosurement	Mahuma (ml.)	0						
Measurement	Volume, (mL)	Containera	Présérvalive	Max. Holding Times	Reference			
Physical Properties								
Spec. Cond. (Field) 100		P, G	Nonə	Det. On Site	1			
pH (Field)	50	P, G	None	Det. On Site	1, 2			
Total Dissolved Solids	50	P, G	Cool, 4°C	7 days	1			
Temperature (Field)	1000	P, G	None	Det. On Site	1			
Turbidity (Field)	100	P, G	Nonə	Det. On Site	1			
Measurement	Volume, (mL)	Container,	Preservative	Max. Holding Times	Reference			
Inorganics, Non-Metallics			<u> </u>					
Ammonia	400	P, G	Cool, 4°C H₂SO₄ to pH <2	28 days	1			
Chloride	200	P, G	Cool, 4°C	28 days	1, 2			
Nitrate plus Nitrite ^(c)	200	P, G	Cool, 4°C H₂SO₄ to pH <2	28 days	1, 2			
Sulfate	100	P, G	Cool, 4°C	28 days	1, 2			
Total Alkalinity	200	P, G	Cool, 4°C	14 days ^(c)	. 1			
Measurement	Volume, (mL)	Container	Preservative	Max. Holding Times	Reference			
Metals (except mercury)		•						
Total	500	P, G	HNO₃ to pH <2	6 Mos	1, 2			
Dissolved 500		P, G	Filt. + HNO ₃ to pH <2	6 Mos	1, 2			
Measurement	Volume, (mL)	Container,	Preservalive	Max. Holding Times	Reference			
Organics								
Volatile Organics by GC/MS	80 (2 vials @ 40mL)	G. Teflon septum cap	Cool, 4°C HCl to pH <2	14 days	2, 3			

NOTES:

a - Plastic (P) or Glass (G). For metals, polyethylene with an all polypropylene cap is preferred.

b - Unpreserved Nitrate recommended 48 hrs. Holding time. Nitrate - Nitrite preserved sample recommended 28 days holding time.

c - TNRCC Technical Guidance recommends 46 hrs. Holding time.

REFERENCES

1 - Methods for Chemical Analysis of Water and Wastes, March, 1983, USEPA, 6(X)/4-79-020 and additions thereto.

2 - Test Methods for Evaluating Solid Waste, Physical Method, November 1986, Third Edition, USEPA, SW-846 and additions thereto.

3 - "Guidelines Establishing Test Procedures for the Analysis of Pollution Under the Clean Water Act," Environmental Protection Agency, Code of Federal Regulations (CFR), tile 40, Part 136.

Examples of this Appendix notwithstanding, holding times and preservation methods will be consistent with the requirements of the approved analytical methods as described in Section 6 of this GWSAP.

APPENDIX C RECOMMENDED CLEANING AND DECONTAMINATION PROCEDURES

Recommended Cleaning and Decontamination Procedures

Field Procedure

The following cleaning and decontamination procedure is recommended for purging and sampling equipment that will be placed into the well or come into contact with the collected sample.:

- i) Clean sampling equipment with a non-phosphate detergent soap mixture,
- ii) Rinse with, in order
- dilute hydrochloric acid or nitric acid, and
- rinse with distilled or deionized water.

In addition, if non-dedicated (reusable) pumps or bailers are used, these further steps will be included:

- iii) Equipment which will be used immediately will be placed on a clean plastic sheet. Equipment which will not be used immediately will be wrapped in clean plastic.
- iv) Pumps will be decontaminated by disassembling the pump, properly cleaning all internal and external parts according to the afore-mentioned procedure, and reassembling the pump.

APPENDIX D LABORATORY CHECKLIST

March 2008, Hydrex

Laboratory Data Package Cover Page

This data package consists of:

- This signature page, the laboratory review checklist, and the following reportable data:
- R1 Field chain-of-custody documentation;
- R2 Sample identification cross-reference;
 R3 Test reports (analytical data sheets) for
 - R3 Test reports (analytical data sheets) for each environmental sample that includes:
 - a) Items specified in NELAC Chapter 5 for reporting results, e.g., Section 5.5.10 in 2003 NELAC Standard
 - b) dilution factors,
 - c) preparation methods,
 - d) cleanup methods, and
 - e) if required for the project, tentatively identified compounds (TICs).
- Image: R4Surrogate recovery data including:
 - a) Calculated recovery (%R), and
 - b) The laboratory's surrogate QC limits.
- R5 Test reports/summary forms for blank samples;
 R6 Test reports/summary forms for laboratory contributions for laboratory contribution.
 - R6 Test reports/summary forms for laboratory control samples (LCSs) including:
 - a) LCS spiking amounts,
 - b) Calculated %R for each analyte, and
 - c) The laboratory's LCS QC limits.
- R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:
 - a) Samples associated with the MS/MSD clearly identified,
 - b) MS/MSD spiking amounts,
 - c) Concentration of each MS/MSD analyte measured in the parent and spiked samples,
 - d) Calculated %Rs and relative percent differences (RPDs), and
 - e) The laboratory's MS/MSD QC limits
- R8 Laboratory analytical duplicate (if applicable) recovery and precision:
 - a) the amount of analyte measured in the duplicate,
 - b) the calculated RPD, and
 - c) the laboratory's QC limits for analytical duplicates.
- R9 List of method quantitation limits (MQLs) for each analyte for each method and matrix;
- RI0 Other problems or anomalies.

□ The Exception Report for every "No" or "Not Reviewed (NR)" item in laboratory review checklist.

Release Statement: I am responsible for the release of this laboratory data package. This data package as been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data.

Check, if applicable: [] This laboratory is an in-house laboratory controlled by the person responding to rule. The official signing the cover page of the rule-required report (for example, the APAR) in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true.

Name (Printed)

Signature

Official Title (printed)

Date

La	bor	atory Review Checklist: Reportable Data								
Lab	Laboratory Name: LRC Date:									
Pro	ject N	lame:	aboratory Job Number:							
Rev	Reviewer Name: Prep Batch Number(s):									
# ¹	A ²	Description		Yes.	No	NA ³	INR ⁴	ER#5		
		Chain-of-custody (C-O-C)	300				STERM			
RI	OI	Did samples meet the laboratory's standard conditions of sam	(Section)	- 83 A	1999	100000	898838			
		Were all departures from standard conditions described in an	1	1		· [
R2	OI	Sample and quality control (OC) identification		23.65	53.No	0.200	3.688	Server S		
		Are all field sample ID numbers cross-referenced to the laboratory ID numbers?						2000		
Ĺ		Are all laboratory ID numbers cross-referenced to the correspondence	onding OC data?	 	-		-			
R3	OI	Test reports		1992	000	46898	50-5	89990		
		Were all samples prepared and analyzed within holding times'		<u> </u>		1				
1		Other than those results < MQL, were all other raw values bra	cketed by calibration standards?							
		Were calculations checked by a peer or supervisor?					-	<u></u>		
		Were all analyte identifications checked by a peer or supervise	or?				f	t		
		Were sample quantitation limits reported for all analytes not d	etected?		-		<u> </u>			
		Were all results for soil and sediment samples reported on a di	ry weight basis?		<u> </u>					
!		Were % moisture (or solids) reported for all soil and sediment	samples?							
	<u> </u>	It required for the project, TICs reported?								
R4	<u> 0</u>	Surrogate recovery data				0.234				
		Were surrogates added prior to extraction?								
0.5		Were surrogate percent recoveries in all samples within the lal	boratory QC limits?							
<u>K3</u>	OI -	1 Test reports/summary forms for blank samples								
		Were heaving and state analyzed?								
		Were wathed blanks taken through the antine angletical and		ļ	I	L	_			
		applicable cleanup procedures?	s, including preparation and, if							
		Were blank concentrations < MOL2				<u> </u>				
R6	OI	Laboratory control samples (LCS):		Sincle.	dang ter	No. 10		22.22.22		
		Were all COCs included in the LCS?		1000	19966	10900	64.04	and an		
		Was each LCS taken through the entire analytical procedure in	neluding men and cleanun stans?		<u> </u>					
		Were LCSs analyzed at the required frequency?	nertioning prep and creatup steps:							
		Were LCS (and LCSD, if applicable) %Rs within the laborator	v OC limits?							
		Does the detectability data document the laboratory's capabilit	ty to detect the COCs at the MDL used to							
		calculate the SQLs?								
		Was the LCSD RPD within QC limits?								
R7	OI	Matrix spike (MS) and matrix spike duplicate (MSD) data					38-33 (2013)	2122		
		Were the project/method specified analytes included in the MS	3 and MSD?							
		Were MS/MSD analyzed at the appropriate frequency?								
	Í	Were MS (and MSD, if applicable) %Rs within the laboratory	QC limits?							
ро	OT	were MS/MSD RPDs within laboratory QC limits?								
ко		Aualytical duplicate data								
	ĺ	Were appropriate analytical duplicates analyzed for each matri	<u>x?</u>							
		Were BDDs or mostive stondard desisting suitting the 11	cy?							
Rđ	OT	Method quantitation limits (JIOL -)	y QC limits?							
	01	Are the MOLs for each method analytic included in the 1-1	ann data mailtea a0	2565	1323		2018	3005a		
		Do the MOLs correspond to the concentration of the langest	u zara palibertian atau 1 10							
	ł	Are unadjusted MOLs included in the laboratory data packaged	m-zero canoration standard?							
R10	OI	Other problems/anomalies	i	1010	10.200	124.3.5	1000 N.			
		Are all known problems/anomalies/special conditions noted in	this L BC and EP2	193	11.243	1619	100			
		Were all necessary corrective actions performed for the report	and JACO AND ENT							
		Was applicable and available technology used to lower the SO	L minimize the matrix interference offects							
		on the sample results?	a manuface the many interference affects							

31
L	abor	atory Review Checklist: Supporting Data						
Labo	orato	ry Name:	LRC Date:					
Proj	Project Name: Laboratory Job Number:							
Revi	iewer	Name:	Pren Batch Number(e)					
# ¹	A ²	A ² Description				NA 313	NDI	ED#5
<u></u> S1	OI	Initial calibration (ICAL)		10	100		11K	ER#
		Were response factors and/or relative response factors for e	ach analyte within OC limits?	(500.05	- Aradai	1 249.000	estatis,	
		Were percent RSDs or correlation coefficient criteria met?		+	<u> </u>			
		Was the number of standards recommended in the method u	used for all analytes?				 	
		Were all points generated between the lowest and highest st	andard used to calculate the curve?					
1		Are ICAL data available for all instruments used?		_				
		Has the initial calibration curve been verified using an appro-	opriate second source standard?		-	<u> </u>		
S2	OI	Initial and continuing calibration verification (ICCV an	d CCV) and continuing calibration blank ⁶ :	1993	20332	6000	- 25/05	1932/0230
\vdash		Was the CCV analyzed at the method-required frequency?	,	200010) Histoph			-Grinilit;
		Were percent differences for each analyte within the method	d-required OC limits?		<u> </u>			
		Was the ICAL curve verified for each analyte?		-				
		Was the absolute value of the analyte concentration in the in	torganic CCB < MDL?	+	<u> </u>			
S 3	0	Mass spectral tuning:		1000	1000	(2):522	1000	ing a start of the
<u> </u>	<u> </u>	Was the appropriate compound for the method used for turi	no?			<u> 99995</u>	2943Q	
		Were jon abundance data within the method-required OC li	mite?			<u> </u>		
<u>54</u>	0	Internal standards (IS):			1000	100000	89955	-
	<u> </u>	Were IS area counts and retention times within the method	required OC limits?	NS83			2003 2003	
<u> </u>		Powy data OVELAC spatian 1 compandin A glassers, and a		1.0000000	100000	- Angelesia	120200	Douviereur
		Were the raw data (for example, chromatograms, spectral d	ection 5.)	66666		3666	2000	
		Were data associated with manual integrations flagged on the	na) reviewed by an analyst?		-		ļ	
S6	0	Dual column confirmation		105306	30558	1200805	30,605	024089509
<u> </u>	Ĕ-	Did dual column confirmation results meet the method-record	ired OC2	10000	5.959.99 5.959.99	200220 2004293		
57	0	Tantatively identified compounds (TICs):		10000	Xeures	a se de la caracita	- 	animer.
	Ĕ	If TICs were requested ware the mass spectra and TIC data	cubicat to annuanciate alcoster?	198396	8.0233 (1993)	8468S	22.22	2003D
58	T	Interference Check Sample (ICS) results:		65365	1040205	- audeea	3,555,9	noverni.
<u> </u>	1	Wara paraent recoveries within method OC limits?		(3333)	8838 8			969,869 1
59	T	Savial dilutions, nost digestion spilles, and method of sta	udand addttan.	2424375	005500	2545625	sánsv	adaadada
	<u> </u>	Wara parcent differences, recoveries, and the linearity with	ndura additions	And			2003.00 2003.00	
S10		Mothed detection limit (ADV) studies	in the QC minus specified in the method?				Tanan eg	TRADELLA.
<u> </u>		Was a MDL study performed for each prosted evolute?		and and a second s		at the second se	33.35	1919-1925 1919-1925
<u> </u>		Was a WIDL study performed for each reported analyte?	200.0				<u> </u>	
S11		Is me which enner adjusted of supported by the analysis of I	JC887	10000	-	1.21.51.575		the second second
		Wes the laboratoria performance accentation with a set				5.00	Sec.	4904394
\$12		was the laboratory's performance acceptable on the applica	ble proficiency fests or evaluation studies?	0/50/2	- Adversari	-	andos Starr	secoldariation
012		Standards documentation	rejused from other environiste severas?					20030
S13	OT	Compound/englyte identification precedures			0.800	- Carlora	-	32033
۲	<u> </u>	Are the procedures for compound/analyte identification dea	unneuted?	2013 (A) 2017 (A)	18888	12223		
S14	σ	Demonstration of analyst competency (DOC)		100000	10001047	26462	- 	
<u> </u>		Was DOC conducted consistent with NELAC Chapter 502				(20152)) 		
		Is decumentation of the analyst's competence up to date and on £1-0				İ		
S15	OI Verification/validation documentation for methods OIEI AC Char for for				-			
Ľ.		Are all the methods used to consents the fast former to the	radified and write the trade of					
S16	OI	Laboratory standard operating procedures (SOPs):	errned, and vandated, where applicable?	1999	Nerres	- 	9999	2,4758
		Are laboratory SOPs current and on file for each method ne	rformed?	states da	<u>,</u>	(sizel)	200625	- 8762 (1996)
		, , , , , , , , , , , , , , , , , , , ,	· · · · · ·					ĺ
	•	• • • • • • • • • • • • • • • • • • • •		1	1	1.	1	1

Labor	Laboratory Review Checklist: Exception Reports				
Laboratory Name:		LRC Date:			
Project Name:		Laboratory Job Number:			
Reviewer Name:		Prep Batch Number(s):			
ER# ⁵ DESCRIPTION					

Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.
O= organic analyses; I = inorganic analyses (and general chenustry, when applicable);

3. NA = Not applicable;

NR = Not reviewed;
ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

6. CCB = Continuing Calibration Blank

APPENDIX E STATISTICAL ANALYSIS PLAN

.

March 2008, Hydrex

ĺ	DETECTION MONITORING STATISTICAL METHODS					
	1.1	Statistical Evaluation of Metals	II			
	1.2	Statistical Evaluation of Volatile Organic Compounds	IV			
	2.0	Handling of Non-Detects	V			

The Carel Corporation Revised March 2008, May 2009 Hydrex The purpose of the statistical evaluation of groundwater data is to determine if there is evidence of a statistically significant increase (SSI) from background values for each detection-monitoring constituent required in the groundwater monitoring program. As more data are collected over time, characteristics of the respective data sets may require the employment of different statistical methods for some wells/constituents. Statistical analyses will be performed in accordance with applicable sections of 30 TAC §330.

1.1 Statistical Evaluation of Metals

Under detection monitoring as described in 30 TAC 330.405(e), at least two types of comparisons are possible at a site with more than one monitoring well:

- comparison of an individual downgradient well to an individual, or group, of upgradient wells (interwell comparison), and
- comparison of current data for a well may be compared to the historical data for the same well (intrawell comparison).

It is important to determine which of the comparisons are likely to be useful before selecting the method(s) to be used. By useful, it is understood that the method has an acceptable Type I error (false positive error) rate and maximizes the statistical power. In accordance with applicable regulatory requirements, statistical analysis will be conducted separately for each tested constituent in each well.

The following discussion includes methods available for proper statistical analysis.

1.1.1 Shewart-CUSUM Control Charts

The Shewart-CUSUM Control Chart procedure assumes that the data are independent and have a normal or transformed normal distribution. A prediction limit analysis will be used in place of a control chart, if appropriate. Shewart-CUSUM control charts allow detection of both major and gradual releases from the facility independent of spatial variation

1.1.1.1 Procedure

Control charts are a form of time-series graph, on which a parametric statistical representation of concentrations of a given constituent are plotted at intervals over time.

The statistics are computed and plotted together with an upper and/or lower control limit on a chart where the x-axis represents time.

The Procedure for conducting the intrawell analysis using combined Shewart-CUSUM Control Charts is provided below:

Three parameters are selected prior to plotting:

- **h** The control limit to which the cumulative sum (CUSUM) values are compared. The EPA recommended value for **h** is 5 units of standard deviation.
- k A reference value that establishes the upper limit for the acceptable displacement of the standardized mean. The EPA recommended value for k is 1.
- **SCL-** The upper Shewart control limit it which the standardized mean will be compared. The EPA recommended value for **SCL** is 4.5.

For each time period, T_i , take n_i independent samples (n_i may be one), and calculate the mean, \bar{x}_i . Compute the standardized mean Z_i of the measured concentrations where only a single new measurement is obtained for each constituent at each event as:

$$Z_i = (x_i - x) \sqrt{n_i} / s$$

Where:

 x_i = value obtained for a constituent during monitoring event i.

s = The standard deviation obtained from prior monitoring data from the same well.

When applicable, for each time period, Ti, compute the cumulative sum, Si, as:

 $S_i = \max\{0, (Z_i - k) + S_{i-1}\}$

Where max $\{A,B\}$ is the maximum of A and B, and $S_0 = 0$.

Plot Z_i and S_i against T_i on the control chart. The results may be plotted in standardized units or converted to the concentration units of the constituents being evaluated. An "out-ofcontrol" situation (potential contamination occurs whenever $Z_i \ge SCL$ or $S_i \ge h$. Two different types of situation are controlled by the limits. Too large a standardized mean will occur if there is a rapid increase in concentration in the well. Too large a cumulative sum may also occur for a more gradual trend. A statistically significant increase (SSI) occurs if both the initial result and a verification sample result consecutively exceed one of the above mentioned statistical limits.

1.1.1.2 Verification Resamples

The standardized mean and CUSUM values are affected differently by outliers. The standardized mean values of the control chart are used as a comparison of each individual new measurement to the control limit, therefore the next monitoring event constitutes an independent verification of the original result. However, the CUSUM procedure incorporates all historical values in the computation, therefore, the effect of the outlier will be present in both the initial and verification sample. Hence, the statistical test will be invalid unless the verification sample value replaces the suspected outlier value. Therefore, outlier values will be replaced by verification resample results.

1.1.2 Prediction Limits

For those metals and inorganic indicator constituents with fewer than 50-percent detections a non-parametric upper prediction limit analysis will be used. An upper prediction limit is a statistical limit calculated to include one or more observations from the same populations with a specified confidence. In groundwater monitoring, an upper prediction limit approach may be used to make comparisons between background and compliance well data. The limit is constructed to contain all k observations with stated confidence. If any observation exceeds the upper prediction limit, this is statistically significant evidence that the observation is not representative of the background group. Both non-parametric and parametric limit analyses will be used as applicable.

1.2 Statistical Evaluation of Volatile Organic Compounds

Volatile organic compounds will be routinely monitored during the detection monitoring program. The statistical limits will be set as the reporting limit (RL) for that VOC constituent.

The use of appropriate methods for incorporating non-detect values within groundwater data sets into statistical interval formulas requires careful consideration with respect to the applicability of the non-detect methodology and the subsequent analysis. Numerous methods of statistical analysis are available for data sets with both small to medium and large percentages of non-detects. Approved methods are simple substitution (PQL/2), Cohen's Method and the modified-Aitchison method. Each of these methods makes certain assumptions regarding the non-detect values in the data set. Both statistical and non-statistical considerations will be used in determining the most appropriate way to handle non-detect values. The method chosen for handling non-detect results will be consistent with dataset properties and the statistical analysis chosen.

APPENDIX 6B – PROPOSED MONITORING WELL LOCATIONS AND CONSTRUCTION DETAILS

INSTALLATION/ABANDONMENT TABLE					
WELL/PROBE ID	INSTALL DURING CONSTRUCTION OF	ABANDON DURING CONSTRUCTION OF			
MW-16	EXISTING	CELL G2			
GMP-4	EXISTING	CELL G2			
OW-28	EXISTING	CELL F2			
GMP-5	EXISTING	CELL F1			
MW-29	CELL G2	N/A			
MW-30	CELL G2	N/A			
MW-31	CELL G2	N/A			
MW-32	CELL G2	N/A			
MW-33	CELL G2	N/A			
MW-34	CELL G2	N/A			
MW-35	CELL G2	N/A			
MW-36	CELL G2	N/A			
MW-37	CELL G2	N/A			
MW-38	CELL G2	N/A			

INSTALL DURING	ABANDON DURING	
CONSTRUCTION OF	CONSTRUCTION OF	
CELL G2	N/A	
CELL G2	CELL D1	
	CELL G2 CELL G2	

INSTALLATION/ABANDONMENT TABLE						
WELL/PROBE	INSTALL DURING	ABANDON DURING				
ID	CONSTRUCTION OF	CONSTRUCTION OF				
MW-42	CELL D1	N/A				
MW-43	CELL D1	N/A				
MW-44	CELL D1	N/A				
MW-45	CELL D1	N/A				
MW-46	CELL D1	N/A				
MW-47	CELL D1	N/A				
MW-48	CELL D1	N/A				
MW-49	CELL D1	N/A				
GMP-23	CELL D1	N/A				
GMP-24	CELL D1	N/A				
GMP-25	CELL D1	N/A				
GMP-26	CELL D1	N/A				
GMP-27	CELL D1	N/A				
GMP-28	CELL D1	N/A				

7	8	9	10	11	12	1:	3	
	÷							no. date by ckd description
								A 00/00/00 TJS SAM PART III PACKAGE
								*TEXAS BOARD OF PROFESSIONAL ENGINEERS FIRM REG. NO. F-845 & TEXAS BOARD OF PROFESSIONAL GEOSCIENTISTS FIRM REG. NO. 50338.
		PRO	POSED MONITOR	ING WELLS				
	NORTHING	FACTING	GROUND ELEVATION	TOTAL DEPTH	SCREEN INTERVAL	TOTAL DEPTH	SCREEN INTERVAL	
WELL ID	NORTHING	EASTING				(FI 603)	(FIBGS)	
IVIV-29	13442568.94	2642636.617	63	8	19 - 9	55	44 - 54	
IVIVV-30	13442926.93	2643118.117	61.3	8.3	19.3 - 9.3	53	42 - 52	
IVIVV-31	13442800.53	2643534.423	60.4	8.4	19.4 - 9.4	52	41 - 51	
IVIVV-32	13442326.3	2643901.998	60.8	7.8	18.8 - 8.8	53	42 - 52	
IVIVV-33	13441852.11	2644269.611	61	8	19 - 9	53	42 - 52	
IVIVV-34	13441483.86	2643942.22	60.8	7.8	18.8 - 8.8	53	42 - 52	
IVIVV-35	13441124.88	2643463.044	61.3	7.0	10.0 - 8.0	53	42 - 52	
IVIVV-30	13440765.9	2042982.278	61.5	0.3 0 E	19.3 - 9.3		42 - 52	
IVIVV-57	13440406.95	2042501.512	61.2	0.5	19.5 - 9.5	55	42 - 52	
IVIVV-38	13440047.95	2642020.746	61.6	0.3 9.6	19.3 - 9.3		42 - 52	
N/W 40	13439688.97	2641539.98	61.0	8.0 8.2	19.6 - 9.6	53	42 - 52	
NUV-40	13439330	2041059.214	63.3	0.3	19.3 - 9.3		44 - 54	
N/N/ 42	13438971.02	2640578.448	63.3	8.3	19.3 - 9.3	55	44 - 54	
IVIVV-42	13438031.95	2040083.45	61.9	7.9	18.9 - 8.9	54	43 - 53	
IVIVV-43	13438274.04	2039001.893	61.7	7.7	10.7 - 0.7	54	43 - 53	
N/N/ 45	13437916.28	2639120.224	61.5	8.5 7.0	19.5 - 9.5	53	42 - 52	
N/N/ 46	13437802.09	2038504.301	63.6	7.8	10.6 - 0.6	50	45 - 55	
N/N/ 47	12420102.99	2030342.390	61	0.5	19.5 - 9.5	55	44 - 54 4E EE	
N/N/ 49	13430042.8	2037302.73	62 5	0	19 - 9	50	43 - 53	
N/W/ 49	12429049.08	2037930.089	64	0.5	10 0	55	44 - 54	
	12/20028	2038411.71	62.2	0	10.2 0.2	50	43 - 53	
	13/39//7	26/0213.2	62.9	8.5	19.9 - 9.9	53	44 - 54	
	NS AND DEPTHS P		UZ.9		ETERMINED AT	TIME OF INSTALL	43 - 55 ATION	
BASED ON CONDITION	NS ENCOUNTERED.							PURPOSES UNL F
								SURNS SU

NOTES:

- 1. ALL MONITORING WELL DESIGN AND CONSTRUCTION WILL BE DONE IN ACCORDANCE WITH 30TAC 330.421.
- 2. WELLS TO BE DRILLED BY TEXAS LICENSED DRILLER.
- 3. INSTALLATION AND WELL DEVELOPMENT TO BE SUPERVISED BY QUALIFIED GEOLOGIST OR ENGINEER.
- 4. FLUIDS INTRODUCED INTO BOREHOLE MUST BE TREATED CITY WATER AND A CHEMICAL ANALYSIS PROVIDED TO EXECUTIVE DIRECTOR.
- 5. STEAMCLEAN PROCEDURES SHOULD BE USED FOR ALL EQUIPMENT THAT ENTERS BOREHOLES SUCH AS TREMIE PIPES OR DRILL PIPE.
- 6. WELL DEVELOPMENT SHOULD CONTINUE UNTIL pH, SPECIFIC CONDUCTANCE AND TEMPERATURE HAVE STABILIZED.

Attachment 6-59

DAVID BARKER, P.G. LICENSE NO. 12931

designe

sheet

file 107608FIG6B.dwa

С

D

E

Victoria County, Texas 1522B PERMIT AMENDMENT

PROPOSED MONITORING WELL CONSTRUCTION DETAILS project contract 107608 Irawi rev FIGURE 6B 🗕 2

of

sheets

APPENDIX 6C – ASSESSMENT MONITORING CONSTITUENTS

Common name ¹	CAS RN ²
Acenaphthene	83-32-9
Acenaphthylene	208-96-8
Acetone	67-64-1
Acetonitrile; Methyl cyanide	75-05-8
Acetophenone	98-86-2
2-Acetylaminofluorene; 2-AAF	53-96-3
Acrolein	107-02-8
Acrylonitrile	107-13-1
Aldrin	309-00-2
Allyl chloride	107-05-1
4-Aminobiphenyl	92-67-1
Anthracene	120-12-7
Antimony	(Total)
Arsenic	(Total)
Barium	(Total)
Benzene	71-43-2
Benzo[a]anthracene; Benzanthracene	56-55-3
Benzo[b]fluoranthene	205-99-2
Benzo[k]fluoranthene	207-08-9
Benzo[ghi]perylene	191-24-2
Benzo[a]pyrene	50-32-8
Benzyl alcohol	100-51-6
Beryllium	(Total)
alpha-BHC	319-84-6
beta-BHC	319-85-7
delta-BHC	319-86-8
gamma-BHC; Lindane	58-89-9
Bis(2-chloroethoxy)methane	111-91-1
Bis(2-chloroethyl)ether; Dichloroethyl ether	111-44-4
Bis(2-chloro-1-methylethyl) ether; 2,2'-Dichlorodiisopropyl ether; DCIP, See footnote 3	108-60-1
Bis(2-ethylhexyl) phthalate	117-81-7
Bromochloromethane; Chlorobromethane	74-97-5
Bromodichloromethane; Dibromochloromethane	75-27-4
Bromoform; Tribromomethane	75-25-2
4-Bromophenyl phenyl ether	101-55-3
Butyl benzyl phthalate; Benzyl butyl phthalate	85-68-7
Cadmium	(Total)
Carbon disulfide	75-15-0
Carbon tetrachloride	56-23-5
Chlordane	See footnote 4
p-Chloroaniline	106-47-8
Chlorobenzene	108-90-7
Chlorobenzilate	510-15-6
p-Chloro-m-cresol; 4-Chloro-3-methylphenol	59-50-7
Chloroethane; Ethyl chloride	75-00-3
Chloroform; Trichloromethane	67-66-3
2-Chloronaphthalene	91-58-7
2-Chlorophenol	95-57-8
4-Chlorophenyl phenyl ether	7005-72-3
Chioroprene	126-99-8
Chromium	(lotal)
	218-01-9 (Tatal)
	(10tal) (Tatal)
Copper	(10(a)) 108 20 4
In-Cresci, S-ivietnyiphenoi	100-39-4
o-oresol; 2-ivietnyiphenol	90-40-7 106 44 5
	100-44-5
	57-12-5

Common name ¹	CAS RN ²
2,4-D; 2,4-Dichlorophenoxyacetic acid	94-75-7
4,4'-DDD	72-54-8
4,4'-DDE	72-55-9
4,4'-DDT	50-29-3
Diallate	2303-16-4
Dibenz[a,h]anthracene	53-70-3
Dibenzofuran	132-64-9
Dibromochloromethane; Chlorodibromomethane	124-48-1
1,2-Dibromo-3-chloropropane; DBCP	96-12-8
1,2-Dibromoethane; Ethylene dibromide; EDB	106-93-4
Di-n-butyl phthalate	84-74-2
o-Dichlorobenzene; 1,2-Dichlorobenzene	95-50-1
m-Dichlorobenzene; 1,3-Dichlorobenzene	541-73-1
p-Dichlorobenzene; 1,4-Dichlorobenzene	106-46-7
3,3'-Dichlorobenzidine	91-94-1
trans-1,4-Dichloro-2-butene	110-57-6
Dichlorodifluoromethane; CFC 12	75-71-8
1,1-Dichloroethane; Ethyldidene chloride	75-34-3
1,2-Dichloroethane; Ethylene dichloride	107-06-2
1,1-Dichloroethylene; 1,1-Dichloroethene;	75-35-4
Vinylidene chloride cis-1,2-Dichloroethylene; cis-1,2-Dichloroethene	156-59-2
trans-1,2-Dichloroethylene; trans-1,2-Dichloroethene	156-60-5
2,4-Dichlorophenol	120-83-2
2,6-Dichlorophenol	87-65-0
1,2-Dichloropropane	78-87-5
1.3-Dichloropropane: Trimethylene dichloride	142-28-9
2,2-Dichloropropane: Isopropylidene chloride	594-20-7
1,1-Dichloropropene	563-58-6
cis-1,3-Dichloropropene	10061-01-5
trans-1,3-Dichloropropene	10061-02-6
Dieldrin	60-57-1
Diethyl phthalate	84-66-2
O.O-Diethyl O-2-pyrazinyl phosphorothioate; Thionazin	297-97-2
Dimethoate	60-51-5
p-(Dimethylamino)azobenzene	60-11-7
7.12-Dimethylbenz[a]anthracene	57-97-6
3.3'-Dimethylbenzidine	119-93-7
alpha, alpha-Dimethylphenethylamine	122-09-8
2,4-Dimethylphenol; m-Xylenol	105-67-9
Dimethyl phthalate	131-11-3
m-Dinitrobenzene	99-65-0
4.6-Dinitro-o-cresol; 4.6-Dinitro-2-methylphenol	534-52-1
2,4-Dinitrophenol	51-28-5
2.4-Dinitrotoluene	121-14-2
2.6-Dinitrotoluene	606-20-2
Dinoseb: DNBP: 2-sec-Butyl-4.6-dinitrophenol	88-85-7
Di-n-octyl phthalate	117-84-0
Diphenylamine	122-39-4
Disulfoton	298-04-4
Endosulfan I	959-98-8
Endosulfan II	33213-65-9
Endosulfan sulfate	1031-07-8
Endrin	72-20-8
Endrin aldehvde	7421-93-4
Ethylbenzene	100-41-4
Ethyl methacrylate	97-63-2
Ethyl methanesulfonate	62-50-0
Famphur	52-85-7

Common name ¹	CAS RN ²		
Fluoranthene	206-44-0		
Fluorene	86-73-7		
Heptachlor	76-44-8		
Heptachlor epoxide	1024-57-3		
Hexachlorobenzene	118-74-1		
Hexachlorobutadiene	87-68-3		
Hexachlorocyclopentadiene	77-47-4		
Hexachloroethane	67-72-1		
Hexachloropropene	1888-71-7		
2-Hexanone: Methyl butyl ketone	591-78-6		
Indeno(1.2.3-cd)pyrene	193-39-5		
Isobutyl alcohol	78-83-1		
Isodrin	465-73-6		
Isophorone	78-59-1		
Isosafrole	120-58-1		
Kepone	143-50-0		
l ead	(Total)		
Mercury	(Total)		
Methachylonitrile	126-98-7		
Methanyrilene	91-80-5		
Methovychlor	72-43-5		
Metholychion Metholychion	72-43-3		
Methyl chloride: Chloromethane	74-05-5		
3 Mothylcholonthrono	56 40 5		
Mathyl athyl katana: MEK: 2 Butanana	78 03 3		
Methyl iedide: Iedemethene	74.99.4		
Methyl methoandet	74-00-4 90 62 6		
Methyl methanogulfengte	66 07 0		
2 Mathulaenthtalana	00-27-3		
z-meurymaphunalene Methyl perethien perethien methyl	91-57-0		
A Mathad 2 mentanenas Mathad isabut dikatang	290-00-0		
4-Methylana bramida: Dibramamathana	100-10-1 74 05 2		
Methylene chleride, Diplomomethane	74-95-5		
	01 20 2		
1.4 Nephthaguinene	91-20-3		
1,4-Naphthologuinone	130-13-4		
	134-32-7		
2-Naphinyiamine	91-59-8 (Tetel)		
o-Nitroaniline; 2-Nitroaniline	88-74-4		
Im-Nitroaniline; 3-Nitroaniline	99-09-2		
p-Nitroaniline; 4-Nitroaniline	100-01-6		
Nitrobenzene	98-95-3		
o-Nitrophenol; 2-Nitrophenol	88-75-5		
p-Nitrophenol; 4-Nitrophenol	100-02-7		
N-Nitrosodi-n-butylamine	924-16-3		
N-Nitrosodiethylamine	55-18-5		
N-Nitrosodimethylamine	62-75-9		
N-Nitrosodiphenylamine	86-30-6		
N-Nitrosodipropylamine; N-Nitroso-N-dipropylamine; Di-n-propylnitrosamine	621-64-7		
N-Nitrosomethylethalamine	10595-95-6		
N-Nitrosopiperidine	100-75-4		
N-Nitrosopyrrolidine	930-55-2		
5-Nitro-o-toluidine	99-55-8		
Parathion	56-38-2		
Pentachlorobenzene	608-93-5		
Pentachloronitrobenzene	82-68-8		
Pentachlorophenol	87-86-5		
Phenacetin	62-44-2		

Common name ¹	CAS RN ²
Phenanthrene	85-01-8
Phenol	108-95-2
p-Phenylenediamine	106-50-3
Phorate	298-02-2
Polychlorinated biphenyls; PCBs	See footnote 5
Pronamide	23950-58-5
Propionitrile; Ethyl cyanide	107-12-0
Pyrene	129-00-0
Safrole	94-59-7
Selenium	(Total)
Silver	(Total)
Silvex; 2,4,5-TP	93-72-1
Styrene	100-42-5
Sulfide	18496-25-8
2,4,5-T; 2,4,5-Trichlorophenoxyacetic acid	93-76-5
2,3,7,8-TCDD; 2,3,7,8-Tetrachlorodibenzo- p-dioxin	1746-01-6
1,2,4,5-Tetrachlorobenzene	95-94-3
1,1,1,2-Tetrachloroethane	630-20-6
1,1,2,2-Tetrachloroethane	79-34-5
Tetrachloroethylene; Tetrachloroethene; Perchloroethylene	127-18-4
2,3,4,6-Tetrachlorophenol	58-90-2
Thallium	(Total)
Tin	(Total)
Toluene	108-88-3
o-Toluidine	95-53-4
Toxaphene	See footnote 6
1,2,4-Trichlorobenzene	120-82-1
1,1,1-Trichloroethane; Methylchloroform	71-55-6
1,1,2-Trichloroethane	79-00-5
Trichloroethylene; Trichloroethene	79-01-6
Trichlorofluoromethane; CFC-11	75-69-4
2,4,5-Trichlorophenol	95-95-4
2,4,6-Trichlorophenol	88-06-2
1,2,3-Trichloropropane	96-18-4
O,O,O-Triethyl phosphorothioate	126-68-1
sym-Trinitrobenzene	99-35-4
Vanadium	(Total)
Vinyl acetate	108-05-4
Vinyl chloride; Chloroethene	75-01-4
Xylene (total)	See footnote 7
Zinc	(Total)

¹ Common names are those widely used in government regulations, scientific publications, and commerce; synonyms exist for many chemicals.

² Chemical Abstracts Service registry number. Where "Total" is entered, all species in the ground water that contain this element are included.

³ This substance is often called bis(2-chloroisopropyl) ether, the name Chemical Abstracts Service applies to its noncommercial isomer, propane, 2,2"-oxybis[2-chloro-(CAS RN 39638-32-9).

⁴ Chlordane: This entry includes alpha-chlordane (CAS RN 5103-71-9), beta-chlordane (CAS RN 5103-74-2), gamma-chlordane (CAS RN 5566-34-7), and constituents of chlordane (CAS RN 57-74-9 and CAS RN 12789-03-6).

⁵ Polychlorinated biphenyls (CAS RN 1336-36-3); this category contains congener chemicals, including constituents of Aroclor-1016 (CAS RN 12674-11-2), Aroclor-1221 (CAS RN 11104-28-2), Aroclor-1232 (CAS RN 11141-16-5), Aroclor-1242 (CAS RN 53469-21-9), Aroclor-1248 (CAS RN 12672-29-6), Aroclor-1254 (CAS RN 11097-69-1), and Aroclor-1260 (CAS RN 11096-82-5).

⁶ Toxaphene: This entry includes congener chemicals contained in technical toxaphene (CAS RN 8001-35-2), i.e., chlorinated camphene.

⁷ Xylene (total): This entry includes o-xylene (CAS RN 96-47-6), m-xylene (CAS RN 108-38-3), p-xylene (CAS RN 106-42-3), and unspecified xylenes (dimethylbenzenes) (CAS RN 1330-20-7).

Table adapted from https://www.ecfr.gov/current/title-40/chapter-l/subchapter-l/part-258

CREATE AMAZING.

Burns & McDonnell Engineering Company, Inc. 8911 Capital of Texas Highway \ Building 3, Suite 3100 Austin, TX 78759 **O** 512-872-7130 **F** 512-872-7127 www.burnsmcd.com

Permit Application 1522B

Attachment 6-65

Rev 0, March 28, 2022